Stripe rust resistance in wheat breeding lines developed for central Shaanxi, an overwintering region for Puccinia striiformis f. sp. tritici in China

2016 ◽  
Vol 38 (3) ◽  
pp. 317-324 ◽  
Author(s):  
J.H. Wu ◽  
Q.L. Wang ◽  
X.M. Chen ◽  
M.J. Wang ◽  
J.M. Mu ◽  
...  
Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 754-760 ◽  
Author(s):  
D. J. Han ◽  
Q. L. Wang ◽  
X. M. Chen ◽  
Q. D. Zeng ◽  
J. H. Wu ◽  
...  

Stripe rust, caused by Puccinia striiformis f. tritici, is one of the most destructive diseases of wheat in the world. The Sichuan Basin is one of the most important regions of wheat production and stripe rust epidemics in China. Stripe rust resistance gene Yr26 (the same gene as Yr24) has been widely used in wheat breeding programs and in many cultivars grown in this region since the gene was discovered in the early 1990s. Virulence to Yr26 has increased in frequency since its first detection in 2008. The objective of this study was to assess the vulnerability of the wheat cultivars and breeding lines in the Sichuan Basin to Yr26-virulent races. In total, 85 wheat accessions were tested with Yr26-avirulent races CYR32, CYR33, and Su11-4 and two Yr26-virulent races, V26/CM42 and V26/Gui22. DNA markers for Yr26 were used to determine the presence and absence of Yr26 in the wheat accessions. Of the 85 wheat accessions, only 5 were resistant and 19 susceptible to all races tested, and the remaining 61 were resistant to at least one or more races tested in seedling stage. In all, 65 (76.5%) accessions were susceptible to the emerging Yr26-virulent race V26/Gui22. In field tests, susceptible accessions increased from 31.8% in a nursery inoculated with predominant and Yr26-avirulent races to 61.2% in the nursery inoculated with the predominant races mixed with V26/Gui22. Based on the results of the molecular marker and race tests, 33 (38.8%) accessions were determined to have Yr26, showing that the Yr26 virulence is a major threat to wheat production in the Sichuan Basin and potentially in other regions of China.


2017 ◽  
Vol 16 (2) ◽  
pp. 178-184 ◽  
Author(s):  
Alma Kokhmetova ◽  
Ram C. Sharma ◽  
Shynbolat Rsaliyev ◽  
Kanat Galymbek ◽  
Kanagat Baymagambetova ◽  
...  

AbstractStripe rust, caused by Puccinia striiformis f.sp. tritici (Pst), is an important disease of winter wheat in Central Asia. Stripe rust races contain diverse virulence/avirulence patterns and change rapidly. Therefore the objectives of this research were to: (i) examine current pathotype variability of Pst races collected from Kazakhstan and Uzbekistan and (ii) evaluate stripe rust resistance in leading cultivars and advanced breeding lines targeted to those regions. Analyses of 152 Pst samples showed diverse virulence patterns with avirulence to Yr5, Yr10 and Yr15 being common. Most of identified races are among the rare. Analysis of a mixed Pst population showed 10 distinct pathotypes with frequencies ranged from 1.2 to 8.7%. The virulence patterns ranged from least ‘31–1.5’ and X-1.5 to highly virulent ‘86 + E16’. Seedling evaluation of 62 genotypes using the 10 pathotypes showed variations for resistance. Bunyodkor and Barhayot showed resistance to all pathotypes. Five Yr genes were postulated. Yr1 in KR12-5075, and Yr6 in KR11-03 and KR12-5003 were postulated. Yr5 combined with Yr10 and Yr15 genes were determined in Bunyodkor. The wheat genotypes also showed different levels of resistance in adult plant stage under field conditions. Twenty genotypes showed <20% severity in both Kazakhstan and Uzbekistan. The disease severity on several genotypes differed in this countries, suggesting different Pst populations in the two countries. Several resistant genotypes were identified, which should be further evaluated for release as new varieties or used in breeding programmes. Two resistant lines from this study were identified as new varieties in Georgia and Uzbekistan.


Plant Disease ◽  
2020 ◽  
Author(s):  
Shuo Huang ◽  
Shengjie Liu ◽  
Yibo Zhang ◽  
Yanzhou Xie ◽  
Xiaoting Wang ◽  
...  

Wheat cultivar Shannong 33 (SN33) has remained highly resistant to stripe rust in the field since its release in 2009. To unravel the genetic architecture of stripe rust resistance, seedlings of 161 recombinant inbred lines (RILs) from the cross Avocet S × SN33 were evaluated with two isolates (PST-Lab.1 and PST-Lab.2) of the stripe rust pathogen (Puccinia striiformis f. sp. tritici) in the greenhouse, and the RILs were evaluated in naturally and/or artificially inoculated field sites during two cropping seasons. The RILs and parents were genotyped with the wheat 55K single nucleotide polymorphism (SNP) array. Three genomic regions conferring seedling resistance were mapped on chromosomes 1DS, 2AS, and 3DS, and four consistent quantitative trait loci (QTL) for adult-plant resistance (APR) were detected on 1BL, 2AS, 3DL, and 6BS. The 2AS locus conferring all-stage resistance was identified as the resistant gene Yr17 located on 2NS translocation. The QTL identified on 1BL and 6BS likely correspond to Yr29 and Yr78, respectively. An APR QTL on 3DL explaining 5.8–12.2% of the phenotypic variation is likely to be new. Molecular marker detection assays with the 2NS segment (Yr17), Yr29, Yr78, and QYrsn.nwafu-3DL on a panel of 420 current Chinese wheat cultivars and breeding lines indicated that these genes were present in 11.4%, 7.6%, 14.8%, and 7.4% entries, respectively. The interactions among these genes/QTL were additive suggesting their potential value in enhancing stripe rust resistance breeding materials as observed in the resistant parent. In addition, we also identified two leaf necrosis genes, Ne1 and Ne2, however, the F1 plants from cross Avocet S × SN33 survived indicating that SN33 probably has another allele of Ne1 which allows to harvest seeds.


2021 ◽  
Vol 57 (No. 1) ◽  
pp. 1-8
Author(s):  
Xiaocui Yan ◽  
Huimin Zheng ◽  
Peipei Zhang ◽  
Gebrewahid Takele Weldu ◽  
Zaifeng Li ◽  
...  

Wheat stripe rust, caused by Puccinia striiformis Westend. f.sp. tritici Eriks (Pst), is one of the most important diseases of bread wheat worldwide. Breeding resistant wheat cultivars is the most economical, effective and environmentally friendly way for controlling wheat stripe rust in China. The Romanian wheat line Fundulea 900 showed good resistance to wheat stripe rust at the adult stage. The present study aimed to map the quantitative trait loci (QTLs) for stripe rust resistance in 176 F<sub>2:6</sub> recombinant inbred lines (RIL) derived from the cross of Fundulea 900 × Thatcher. The RIL population was phenotyped for stripe rust (YR) severity at Mianyang in the Sichuan province and Baoding in the Hebei province in the 2016/2017 and 2017/2018 cropping seasons. SSR markers combined with a preferred screened group (PSG) analysis were used to identify the QTLs for stripe rust in the population. Three QTLs for stripe rust resistance were mapped on chromosomes 1AL, 7BL and 7DS, respectively. All three QTLs originated from Fundulea 900 and were detected in all the environments. The QTL on 7DS was provided by the known resistance gene Yr18/Lr34. The two QTLs on chromosomes 1AL and 7BL were explained by 9.2 to 21.5% and 5.1 to 10.1% of the phenotypic variance, respectively and might be new QTLs. The QTLs identified in the study and their closely linked markers can be used for marker-assisted selection (MAS) in wheat breeding programmes.


Plant Disease ◽  
2021 ◽  
Author(s):  
Cai Sun ◽  
Yike Liu ◽  
Qiang Li ◽  
Baotong Wang ◽  
Shuhui Chen ◽  
...  

Wheat stripe rust, an airborne fungal disease and caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is one of the most devastating diseases on wheat. It is the most effective and economical measure for the diseases control to identify high-level resistance genes and apply in wheat breeding. Chinese wheat cultivar Xike01015 presents high levels of all stage resistance (ASR) to the current predominant Pst race CYR33. In this study, a single dominant gene, designated as YrXk, was identified in Xike01015 conferring resistance to CYR33 with genetic analysis of F2 and BC1 population from cross of Mingxian169 (susceptible) and Xike01015. The specific length amplified fragment sequencing (SLAF-seq) strategy was used to construct linkage map in the F2 population. QTL analysis mapped YrXk to a 12.4 Mb segment on chromosome1BS, explaining over 86.96% phenotypic variance. Gene annotation in the QTL region identified three differential expressed candidate genes , TraesCS1B02G168600.1, TraesCS1B02G170200.1, and TraesCS1B02G172400.1. The qRT-PCR results displayed that TraesCS1B02G170200.1 and TraesCS1B02G168600.1 significantly up-regulated and down-regulated, respectively, and TraesCS1B02G170200.1 slightly up-regulated after changed with CYR33 in the seedling stage, which indicating these genes may function in wheat resistance to stripe rust. The results of this study can be used in wheat breeding for improving resistance to stripe rust.


Euphytica ◽  
2013 ◽  
Vol 196 (2) ◽  
pp. 271-284 ◽  
Author(s):  
Qing-Dong Zeng ◽  
De-Jun Han ◽  
Qi-Lin Wang ◽  
Feng-Ping Yuan ◽  
Jian-Hui Wu ◽  
...  

Genome ◽  
2005 ◽  
Vol 48 (6) ◽  
pp. 1028-1036 ◽  
Author(s):  
P Ling ◽  
X M Chen

A hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome (BAC) library was constructed for cloning Yr5 and other genes conferring resistance to stripe rust (Puccinia striiformis f. sp. tritici). Intact nuclei from a Yr5 near-isogenic line were used to isolate high molecular weight DNA, which was partially cleaved with HindIII and cloned into pECBAC1 and pIndigoBAC-5 vectors. The wheat BAC library consisted of 422 400 clones arrayed in 1100 micro-titer plates (each plate with 384 wells). Random sampling of 300 BAC clones indicated an average insert size of 140 kb, with a size range from 25 to 365 kb. Ninety percent of the clones in the library had an insert size greater than 100 kb and fewer than 5% of the clones did not contain inserts. Based on an estimated genome size of 15 966 Mb for hexaploid wheat, the BAC library was estimated to have a total coverage of 3.58× wheat genome equivalents, giving approximately 96% probability of identifying a clone representing any given wheat DNA sequence. Twelve BAC clones containing an Yr5 locus-specific marker (Yr5STS7/8) were successfully selected by PCR screening of 3-dimensional BAC pools. The results demonstrated that the T. aestivum BAC library is a valuable genomic resource for positional cloning of Yr5. The library also should be useful in cloning other genes for stripe rust resistance and other traits of interest in hexaploid wheat.Key words: BAC library, BAC pools, hexaploid wheat, Puccinia striiformis f. sp. tritici, resistance gene, stripe rust, Triticum aestivum.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1482-1487 ◽  
Author(s):  
Qiang Li ◽  
Jing Huang ◽  
Lu Hou ◽  
Pei Liu ◽  
Jinxue Jing ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is to grow resistant cultivars, but only a few effective genes are available. The wheat accession H9020-1-6-8-3 is a translocation line previously developed from interspecific hybridization between wheat genotype 7182 and Psathyrostachys huashanica, and is resistant to most Chinese Puccinia striiformis f. sp. tritici races. To identify the resistance genes in the translocation line, H9020-1-6-8-3 was crossed with susceptible genotype Mingxian 169, and seedlings of parents and F1, F2, and F3 progenies were tested with prevalent Chinese P. striiformis f. sp. tritici races CYR32 and CYR33 under controlled greenhouse conditions. The genetic results indicated that two single dominant genes in H9020-1-6-8-3 confer resistance to CYR32 and CYR33, respectively. The gene for resistance to CYR33 was temporarily designated as YrH9020. Six simple-sequence repeat markers were used to map the resistance gene to the short arm of wheat chromosome 2D, using 329 F2 plants tested with CYR33 in the greenhouse. The genetic distances of the two closest flanking markers, Xgwm261 and Xgwm455, were 4.4 and 5.8 centimorgans, respectively. Disease assessments and polymorphic tests of the flanking markers among the Psathyrostachys huashanica line and wheat lines 7182, H9020-1-6-8-3, and Mingxian169 suggested that the resistance gene YrH9020 in H9020-1-6-8-3 was originally from P. huashanica. The exotic stripe rust resistance gene and linked molecular markers should be useful for pyramiding with other genes to develop wheat cultivars with high-level and durable resistance to stripe rust.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Rollar ◽  
Manuel Geyer ◽  
Lorenz Hartl ◽  
Volker Mohler ◽  
Frank Ordon ◽  
...  

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 439-447 ◽  
Author(s):  
Qingdong Zeng ◽  
Jianhui Wu ◽  
Shengjie Liu ◽  
Xianming Chen ◽  
Fengping Yuan ◽  
...  

Stripe rust caused by Puccinia striiformis f. sp. tritici threatens worldwide wheat production. Growing resistant cultivars is the best way to control this disease. Chinese wheat cultivar Qinnong 142 (QN142) has a high level of adult-plant resistance to stripe rust. To identify quantitative trait loci (QTLs) related to stripe rust resistance, we developed a recombinant inbred line (RIL) population from a cross between QN142 and susceptible cultivar Avocet S. The parents and 165 F6 RILs were evaluated in terms of their stripe rust infection type and disease severity in replicated field tests with six site-year environments. The parents and RILs were genotyped with single-nucleotide polymorphism (SNP) markers. Four stable QTLs were identified in QN142 and mapped to chromosome arms 1BL, 2AL, 2BL, and 6BS. The 1BL QTL was probably the known resistance gene Yr29, the 2BL QTL was in a resistance gene-rich region, and the 2AL and 6BS QTLs might be new. Kompetitive allele specific polymerase chain reaction markers developed from the SNP markers flanking these QTLs were highly polymorphic in a panel of 150 wheat cultivars and breeding lines. These markers could be used in marker-assisted selection for incorporating the stripe rust resistance QTL into new wheat cultivars.


Sign in / Sign up

Export Citation Format

Share Document