Biomolecular interactions and binding dynamics of inhibitor arachidonic acid, with tyrosinase enzyme

Author(s):  
Tahereh Shojazadeh ◽  
Leila Zolghadr ◽  
Saeed JafarKhani ◽  
Sajjad Gharaghani ◽  
Alireza Farasat ◽  
...  
1988 ◽  
Vol 59 (01) ◽  
pp. 073-076 ◽  
Author(s):  
Sergio Cortelazzo ◽  
Monica Galli ◽  
Donatella Castagna ◽  
Piera Viero ◽  
Giovanni de Gaetano ◽  
...  

SummaryIn patients with myeloproliferative disorders (MPD) a group of related diseases of the bone marrow stem cell and recurrent haemorrhagic and/or thrombotic complications, the production of aggregating prostaglandins (PGs) may be normal or slightly reduced, while PGI2 production is normal. However, MPD platelet sensitivity to antiaggregatory PGs is still unknown.We studied the potency of PGD2, PGI2 and PGEi as inhibitors of platelet aggregation induced by threshold aggregating concentrations of arachidonic acid and U-46619-analogue of the cyclic endoperoxide PGH2 in 20 patients with MPD in comparison with healthy controls, with the aim of evaluating the sensitivity of MPD platelets to antiaggregatory PGs. In these patients platelet prostanoid metabolism was normal. However, the functional response of platelets to aggregating and antiaggregating prostanoids was shifted towards potentially increased platelet aggregation response. These findings could have a clinical relevance in view of the haemostatic and thrombotic complications so frequent in MPD.


1988 ◽  
Vol 60 (02) ◽  
pp. 314-318 ◽  
Author(s):  
A M A Gader ◽  
H Bahakim ◽  
F A Jabbar ◽  
A L Lambourne ◽  
T H Gaafar ◽  
...  

SummaryThe aggregation of platelets collected from maternal/neonatal pairs (n = 240) at the time of childbirth, was studied in response to multiple doses of ADP, collagen, arachidonic acid and ristocetin. Similar responses were obtained from healthy nonpregnant adult controls for comparison. The lag phase, slope of the aggregation curves as well as maximum aggregation (MA%) were recorded and analysed. Neonatal and adult platelets exhibited more enhanced responses to decreasing doses of ADP, arachidonic acid and ristocetin, than maternal platelets. These enhanced responses were exhibited more consistantly in the slopes of the aggregation curves than in MA%. Although neonatal platelets have shown longer lag phase in their responses to collagen, the rate of the aggregation reaction was significantly faster than maternal platelets, with no differences in MA%. These results contradict many previous reports suggesting impaired aggregation responses of neonatal platelets to these agonist. The possible reasons for these contradictions were discussed.


1990 ◽  
Vol 63 (02) ◽  
pp. 291-297 ◽  
Author(s):  
Herm-Jan M Brinkman ◽  
Marijke F van Buul-Worteiboer ◽  
Jan A van Mourik

SummaryWe observed that the growth of human umbilical arterysmooth muscle cells was inhibited by the phospholipase A2 inhibitors p-bromophenacylbromide and mepacrine. Thesefindings suggest that fatty acid metabolism might be integrated in the control mechanism of vascular smooth muscle cell proliferation. To identify eicosanoids possibly involved in this process, we studied both the metabolism of arachidonic acid of these cells in more detail and the effect of certain arachidonic acid metabolites on smooth muscle cells growth. We found no evidence for the conversion of arachidonic acid via the lipoxygenase pathway. In contrast, arachidonic acid was rapidly converted via the cyclooxy-genase pathway. The following metabolites were identified: prostaglandin E2 (PGE2), 6-keto-prostaglandin F1α (6-k-PGF1α), prostaglandin F2α (PGF2α), 12-hydroxyheptadecatrienoic acid (12-HHT) and 11-hydroxyeicosatetetraenoic acid (11-HETE). PGE2 was the major metabolite detected. Arachidonic acid metabolites were only found in the culture medium, not in the cell. After synthesis, 11-HETE was cleared from the culture medium. We have previously reported that PGE2 inhibits the serum-induced [3H]-thymidine incorporation of growth-arrested human umbilical artery smooth muscle cells. Here we show that also 11-HETEexerts this inhibitory property. Thus, our data suggeststhat human umbilical artery smooth muscle cells convert arachidonic acid only via the cyclooxygenase pathway. Certain metabolites produced by this pathway, including PGE2 and 11-HETE, may inhibit vascular smooth muscle cell proliferation.


1990 ◽  
Vol 64 (03) ◽  
pp. 473-477 ◽  
Author(s):  
Shih-Luen Chen ◽  
Wu-Chang Yang ◽  
Tung-Po Huang ◽  
Shiang Wann ◽  
Che-ming Teng

SummaryTherapeutic preparations of desmopressin for parenteral use contain the preservative chlorobutanol (5 mg/ml). We show here that chlorobutanol is a potent inhibitor of platelet aggregation and release. It exhibited a significant inhibitory activity toward several aggregation inducers in a concentration- and time-dependent manner. Thromboxane B2 formation, ATP release, and elevation of cytosolic free calcium caused by collagen, ADP, epinephrine, arachidonic acid and thrombin respectively were markedly inhibited by chlorobutanol. Chlorobutanol had no effect on elastase- treated platelets and its antiplatelet effect could be reversed. It is concluded that the antiplatelet effect of chlorobutanol is mainly due to its inhibition on the arachidonic acid pathway but it is unlikely to have a nonspecitic toxic effect. This antiplatelet effect of chlorobutanol suggests that desmopressin, when administered for improving hemostasis, should not contain chlorobutanol as a preservative.


1993 ◽  
Vol 70 (05) ◽  
pp. 822-825 ◽  
Author(s):  
B Hoet ◽  
J Arnout ◽  
H Deckmyn ◽  
J Vermylen

SummaryRidogrel, a combined thromboxane receptor antagonist and thromboxane synthase inhibitor (1), inhibits platelet aggregation. Following stimulation with arachidonic acid, cAMP-levels are increased in human platelets preincubated with ridogrel, this is due to the known reorientation of the metabolism of the formed endoperoxides towards adenylate cyclase stimulating prostaglandins.Pretreatment of resting platelets with UDCG-212, a cAMP-phosphodiesterase inhibitor (2), also inhibits platelet aggregation induced by arachidonic acid, concomitant with an increase in cAMP levels, due to an inhibition of its breakdown. Under basal conditions, cAMP also is increased.By combining the two drugs, a more than additive action was observed on platelet aggregation and on both resting and stimulated platelet cAMP content. The appropriate combination may result in a more effective antiplatelet strategy.


1992 ◽  
Vol 67 (04) ◽  
pp. 458-460 ◽  
Author(s):  
Zhang Bin ◽  
Long Kun

SummaryGlaucocalyxin A is a new diterpenoid isolated from the ethereal extract of the leaves of Rabdosia japonica (Burm f) Hara var glaucocalyx (Maxim) Hara (Labiatae) collected in the northeastern China. When it was incubated with washed rabbit platelets, glaucocalyxin A inhibited ADP- or arachidonic acid-induced platelet aggregation with IC50 values of 4.4 μmol/1, 14.1 μmol/1 respectively. Glaucocalyxin A also inhibited PAF-induced aggregation of rabbit platelets which were refractory to ADP and arachidonic acid with an IC50 value of 13.7 μmol/1. Analysis of [3H]-PAF binding showed that glaucocalyxin A prevented [3H]-PAF binding to intact washed rabbit platelets with an IC50 value of 8.16 μmol/1, which was consistent with its inhibition of PAF-induced platelet aggregation.


1981 ◽  
Vol 45 (03) ◽  
pp. 257-262 ◽  
Author(s):  
P D Winocour ◽  
R L Kinlough-Rathbone ◽  
J F Mustard

SummaryWe have examined whether inhibition by mepacrine of freeing of arachidonic acid from platelet phospholipids inhibits platelet aggregation to collagen, thrombin or ADP, and the release reaction induced by thrombin or collagen. Loss of arachidonic acid was monitored by measuring the amount of 14 C freed from platelets prelabelled with 14 C-arachidonic acid. Mepacrine inhibited 14 C loss by more than 80% but did not inhibit thrombin-induced platelet aggregation and had a small effect on release. ADP-induced platelet aggregation did not cause 14 C loss. Mepacrine inhibited ADP-induced platelet aggregation by inhibiting the association of fibrinogen with platelets during aggregation. The effect of mepacrine on fibrinogen binding could be considerably decreased by washing the platelets but the inhibition of 14 C loss persisted. Platelets pretreated with mepacrine and then washed show restoration of aggregation to collagen. Thus, mepacrine has two effects; 1. it inhibits phospholipases, 2. it inhibits fibrinogen binding. Freeing of arachidonic acid is not necessary for platelet aggregation or the release reaction.


1981 ◽  
Vol 45 (03) ◽  
pp. 204-207 ◽  
Author(s):  
Wolfgang Siess ◽  
Peter Roth ◽  
Peter C Weber

SummaryPlatelets have been implicated in the development of atherosclerotic and thrombotic vascular diseases. Evaluation of platelet aggregation in relation to endogenously formed compounds which affect platelet function may provide information of clinical and pharmacological relevance. We describe a method in which thromboxane B2 (TXB2) formation was analyzed following stimulation of platelet-rich plasma (PRP) with ADP, 1-epinephrine, collagen, and arachidonic acid. In addition, we determined platelet sensitivity to prostacyclin following ADP- and collagen-induced platelet aggregation. The parameters under study were found to depend on the platelet count in PRP, on the type and dose of the aggregating agent used, and on the test time after blood sampling. By standardization of these variables, a reliable method was established which can be used in clinical and pharmacological trials.


1989 ◽  
Vol 62 (03) ◽  
pp. 1034-1039 ◽  
Author(s):  
Jan S Brunkwall ◽  
James C Stanley ◽  
Timothy F Kresowik ◽  
Linda M Graham ◽  
William E Burkel ◽  
...  

SummaryRegulation of prostanoid release from ex vivo perfused vessel segments is not fully understood. A series of perfusion experiments were performed with canine arteries and veins to define certain regulatory phenomena. Arteries were perfused with pulsatile flow of 90 ml/min at a pressure of 100 mmHg, and veins with nonpulsatile flow of 90 ml/min at a pressure of 7 mmHg. Segments were perfused with Hanks' balanced salt solution for five 15-min periods with the perfusate exchanged after each study period. With onset of perfusion, there was an initial burst of prostacyclin release to 127 ± 40 pg/mm2, declining to 32 ± 10 pg/mm2 after 60 minutes (p <0.005). If perfusion continued for 5.5 hours, there was a stable release period between 1 and 3 hours, followed by a very slow decline. At that time addition of arachidonic acid (AA) increased prostacyclin release six-fold (p <0.01). Vessels perfused for 1 hour and then rested for another hour, responded to reperfusion at the second onset of flow with a two-fold increase in prostacyclin release (p <0.01). Vessels perfused with thrombin, bradykinin or A A (either added to each perfusate or only to the last perfusate) exhibited greater prostacyclin release than did control segments. Release of thromboxane steadily declined with time in all parts of the study, and only increased with the addition of A A to the perfusate. These data indicate that vessel segments subjected to ex vivo perfusion do not maximally utilize enzyme systems responsible for prostanoid production, and after 1 hour perfusion have not depleted their phospholipids, and maintain functioning levels of phospholipase and cyclooxygenase activity. This perfusion model allows for the study of prostacyclin and thromboxane release from arteries and veins and their response to various drugs and other stimuli.


Sign in / Sign up

Export Citation Format

Share Document