Phylogenetic structure of annual plant communities along an aridity gradient. Interacting effects of habitat filtering and shifting plant–plant interactions

Author(s):  
Raúl García-Camacho ◽  
Johannes Metz ◽  
Mark C. Bilton ◽  
Katja Tielbörger
Author(s):  
Antonio I. Arroyo ◽  
Yolanda Pueyo ◽  
Hugo Saiz ◽  
Concepción L. Alados

AbstractAn understanding of the diversity spatial organization in plant communities provides essential information for management and conservation planning. In this study we investigated, using a multi-species approach, how plant–plant interactions determine the local structure and composition of diversity in a set of Mediterranean plant communities, ranging from semi-arid to subalpine habitats. Specifically, we evaluated the spatial pattern of diversity (i.e., diversity aggregation or segregation) in the local neighborhood of perennial plant species using the ISAR (individual species–area relationship) method. We also assessed the local pattern of beta-diversity (i.e., the spatial heterogeneity in species composition among local assemblages), including the contribution of species turnover (i.e., species replacement) and nestedness (i.e., differences in species richness) to the overall local beta-diversity. Our results showed that local diversity segregation decreased in the less productive plant communities. Also, we found that graminoids largely acted as diversity segregators, while forbs showed more diverse neighborhoods than expected in less productive study sites. Interestingly, not all shrub and dwarf shrub species aggregated diversity in their surroundings. Finally, an increase in nestedness was associated with less segregated diversity patterns in the local neighborhood of shrub species, underlining their role in creating diversity islands in less productive environmental conditions. Our results provide further insights into the effect of plant–plant interactions in shaping the structure and composition of diversity in Mediterranean plant communities, and highlight the species and groups of species that management and conservation strategies should focus on in order to prevent a loss of biodiversity.


Author(s):  
Jitendra Rajpoot

International Allelopathy Society has redefined Allelopathy as any process involving secondary metabolities produced by plants, algae, bacteria, fungi and viruses that influences the growth and development of agricultural and biological system; a study of the functions of secondary metabolities, their significance in biological organization, their evolutionary origin and elucidation of the mechanisms involving plant-plant, plant-microorganisms, plant-virus, plant-insect, plant-soil-plant interactions.


Alpine Botany ◽  
2021 ◽  
Author(s):  
Vera Margreiter ◽  
Janette Walde ◽  
Brigitta Erschbamer

AbstractSeed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 213
Author(s):  
Irene Dini ◽  
Roberta Marra ◽  
Pierpaolo Cavallo ◽  
Angela Pironti ◽  
Immacolata Sepe ◽  
...  

Plants emit volatile organic compounds (VOCs) that induce metabolomic, transcriptomic, and behavioral reactions in receiver organisms, including insect pollinators and herbivores. VOCs’ composition and concentration may influence plant-insect or plant-plant interactions and affect soil microbes that may interfere in plant-plant communication. Many Trichoderma fungi act as biocontrol agents of phytopathogens and plant growth promoters. Moreover, they can stimulate plant defense mechanisms against insect pests. This study evaluated VOCs’ emission by olive trees (Olea europaea L.) when selected Trichoderma fungi or metabolites were used as soil treatments. Trichoderma harzianum strains M10, T22, and TH1, T. asperellum strain KV906, T. virens strain GV41, and their secondary metabolites harzianic acid (HA), and 6-pentyl-α-pyrone (6PP) were applied to olive trees. Charcoal cartridges were employed to adsorb olive VOCs, and gas chromatography mass spectrometry (GC-MS) analysis allowed their identification and quantification. A total of 45 volatile compounds were detected, and among these, twenty-five represented environmental pollutants and nineteen compounds were related to olive plant emission. Trichoderma strains and metabolites differentially enhanced VOCs production, affecting three biosynthetic pathways: methylerythritol 1-phosphate (MEP), lipid-signaling, and shikimate pathways. Multivariate analysis models showed a characteristic fingerprint of each plant-fungus/metabolite relationship, reflecting a different emission of VOCs by the treated plants. Specifically, strain M10 and the metabolites 6PP and HA enhanced the monoterpene syntheses by controlling the MEP pathway. Strains GV41, KV906, and the metabolite HA stimulated the hydrocarbon aldehyde formation (nonanal) by regulating the lipid-signaling pathway. Finally, Trichoderma strains GV41, M10, T22, TH1, and the metabolites HA and 6PP improve aromatic syntheses at different steps of the shikimate pathway.


2017 ◽  
Vol 106 (3) ◽  
pp. 1001-1009 ◽  
Author(s):  
Yuanzhi Li ◽  
Bill Shipley ◽  
Jodi N. Price ◽  
Vinícius de L. Dantas ◽  
Riin Tamme ◽  
...  

2021 ◽  
pp. 127993
Author(s):  
Chun Song ◽  
Clement Kyei Sarpong ◽  
Xiaofeng Zhang ◽  
Wenjing Wang ◽  
Lingfeng Wang ◽  
...  

1993 ◽  
Vol 23 (10) ◽  
pp. 2180-2193 ◽  
Author(s):  
Pu Mou ◽  
Robert J. Mitchell ◽  
Robert H. Jones

Ecological field theory, unlike many other vegetation modeling approaches, provides a basis to construct an individually based, spatially explicit, and resource-mediated model for mechanistic simulation of plant–plant interactions and vegetation dynamics. The model REGROW has been developed, based on ecological field theory principles, to simulate vegetation dynamics for northern hardwood forests. Using data from a current study of a southern pine system to calibrate a modified version of this model, SPGROW, we simulated growth of individuals for the first growing season in stands of loblolly pine (Pinustaeda L.) and sweetgum (Liquidambarstyraciflua L.) seedlings and loblolly pine seedling–sweetgum sprout mixtures. SPGROW accurately simulated stand development at population and stand levels. However, less agreement occurred at the individual level between simulated and field survey values, possibly owing to lack of data on site heterogeneity and genetic variation. Plant interactions, which altered resource availability (light, water, and nutrients) to individual plants, played a major role in differentiating plant size in the model. Given its unique model structure and simulation accuracy, SPGROW has the potential to provide very detailed insight into the mechanisms of plant–plant interactions.


Sign in / Sign up

Export Citation Format

Share Document