Ecological field theory model: a mechanistic approach to simulate plant–plant interactions in southeastern forest ecosystems

1993 ◽  
Vol 23 (10) ◽  
pp. 2180-2193 ◽  
Author(s):  
Pu Mou ◽  
Robert J. Mitchell ◽  
Robert H. Jones

Ecological field theory, unlike many other vegetation modeling approaches, provides a basis to construct an individually based, spatially explicit, and resource-mediated model for mechanistic simulation of plant–plant interactions and vegetation dynamics. The model REGROW has been developed, based on ecological field theory principles, to simulate vegetation dynamics for northern hardwood forests. Using data from a current study of a southern pine system to calibrate a modified version of this model, SPGROW, we simulated growth of individuals for the first growing season in stands of loblolly pine (Pinustaeda L.) and sweetgum (Liquidambarstyraciflua L.) seedlings and loblolly pine seedling–sweetgum sprout mixtures. SPGROW accurately simulated stand development at population and stand levels. However, less agreement occurred at the individual level between simulated and field survey values, possibly owing to lack of data on site heterogeneity and genetic variation. Plant interactions, which altered resource availability (light, water, and nutrients) to individual plants, played a major role in differentiating plant size in the model. Given its unique model structure and simulation accuracy, SPGROW has the potential to provide very detailed insight into the mechanisms of plant–plant interactions.

2021 ◽  
Author(s):  
Noémie Gaudio ◽  
Cyrille Violle ◽  
Xavier Gendre ◽  
Florian Fort ◽  
Rémi Mahmoud ◽  
...  

Calls for ecological principles in agriculture have gained momentum. Intercropping systems have long been designed by growing two, or more, annual crop species in the same field, aiming for a better resource use efficiency. However, assembly rules for their design are lacking. Notably, it is still unknown whether species performances are maximized during both the vegetative and reproductive phases given the sensitivity of reproductive allocation rules to resource limitation. Interestingly, ecological theory provides expectations regarding putative invariance of plant reproductive allometry (PRA) under non-limiting conditions for plant growth. Here we examined whether and how PRA changes in response to plant-plant interactions in intercropping systems, which can inform both ecological theory and the understanding of the functioning of intercropping systems. We analyzed a dataset of 28 field cereal-legume intercropping trials from various climatic and management conditions across Western Europe. PRA was quantified in both mixing and single-species situations. PRA was positively impacted in specific management conditions, leading to a greater increase in yield for a given increase in plant size. Variations in PRA were more beneficial for legumes grown in unfertilized mixture, which explains their use as a key component in actual intercrop systems. The response for cereals was similar but less pronounced in magnitude, and was greater under limiting resource conditions. Focusing on intercropping conditions, hierarchical competition (indicated by biomass difference between intercropped species) appears as a strong driver of the reproductive output of a given species. Synthesis and applications. PRA behaves in crop species in the same way as it does in wild species. However, contrary to theoretical expectations about an overall invariance of PRA, our meta-analysis highlighted taxon-specific and context-dependent effects of plant-plant interactions on PRA. This systematic deviation to PRA expectations could be leveraged to cultivate each species up to its reproductive optimum while accounting for the performance of the other, whether the farmer's objective is to favor one species or reach an equilibrium in seed production. In turn, such a dialog between agronomy and ecology is a unique opportunity to challenge the validity domain and robustness of major ecological laws.


Author(s):  
Ciro Cabal ◽  
Ricardo Martínez-García ◽  
Fernando Valladares

Ecologists use the net biotic interactions among plants as a major factor to predict other ecosystem features, such as species diversity, community structure, or plant atmospheric carbon uptake. By adopting this approach, ecologists have built a giant body of theory founded on observational evidence. However, growing evidence points out that this may not be the right approach. The literature addressing the biophysical mechanisms underlying the plant interactions is much scarcer. A rising number of scientists claim the need for a mechanistic understanding of plant interactions due to the limitations that a phenomenological approach raises both in empirical and theoretical studies. Scattered studies have recently taken such a mechanistic approach, but we still lack a general theoretical framework to study mechanistically plant interactions. In this review, we first recapitulate the elementary units of plant interactions, i.e., all the known biophysical processes affected by the presence of an influencing plant and the possible phenotypic responses of plants influenced by those processes. Second, we discuss how a net interaction between two plants emerges from the simultaneous effect of these elementary units. Third, we touch upon the spatial and temporal variability of the net interaction and discuss the links between this variability and the underlying biophysical processes. We conclude by discussing how to integrate these processes into a mechanistic framework for plant interactions that must necessarily focus on the individual scale and explicitly incorporate the spatial structure of the community and environmental factors: the plant interaction models (PIM). A PIM incorporates a pair or few plants interacting with their physical environment so that the biotic interaction is not imposed but emerges from the model. This type of model can provide concise, mechanistic hypotheses to be tested empirically. This review calls for a paradigm shift in the ecology of plant interactions, from the classic species interaction study towards a more mechanistic individual-level approach. It also presents a comprehensive foundation for studying the mechanisms underpinning the net interaction between two plants.


2019 ◽  
Author(s):  
Liubov Zakharova ◽  
Katrin M Meyer ◽  
Merav Seifan

Trait-based approaches are an alternative to species-based approaches for functionally linking individual organisms with community structure and dynamics. In the trait‑based approach, the focus is on the traits, the physiological, morphological, or life-history characteristics, of organisms rather than their species. Although used in ecological research for several decades, this approach only emerged in ecological modelling about twenty years ago. We review this rise of trait-based models and trace the occasional transfer of trait-based modelling concepts between terrestrial plant ecology, animal and microbial ecology, and aquatic ecology. Trait-based models have a variety of purposes, such as predicting changes in species distribution patterns under climate and land-use change, planning and assessing conservation management, or studying invasion processes. In modelling, trait-based approaches can reduce technical challenges such as computational limitations, scaling problems, and data scarcity. However, we note inconsistencies in the current usage of terms in trait-based approaches and these inconsistencies must be resolved if trait-based concepts are to be easily exchanged between disciplines. Specifically, future trait-based models may further benefit from incorporating intraspecific trait variability and addressing more complex species interactions. We also recommend expanding the combination of trait-based approaches with individual-based modelling to simplify the parameterization of models, to capture plant-plant interactions at the individual level, and to explain community dynamics under global change.


2019 ◽  
Author(s):  
Liubov Zakharova ◽  
Katrin M Meyer ◽  
Merav Seifan

Trait-based approaches are an alternative to species-based approaches for functionally linking individual organisms with community structure and dynamics. In the trait‑based approach, the focus is on the traits, the physiological, morphological, or life-history characteristics, of organisms rather than their species. Although used in ecological research for several decades, this approach only emerged in ecological modelling about twenty years ago. We review this rise of trait-based models and trace the occasional transfer of trait-based modelling concepts between terrestrial plant ecology, animal and microbial ecology, and aquatic ecology. Trait-based models have a variety of purposes, such as predicting changes in species distribution patterns under climate and land-use change, planning and assessing conservation management, or studying invasion processes. In modelling, trait-based approaches can reduce technical challenges such as computational limitations, scaling problems, and data scarcity. However, we note inconsistencies in the current usage of terms in trait-based approaches and these inconsistencies must be resolved if trait-based concepts are to be easily exchanged between disciplines. Specifically, future trait-based models may further benefit from incorporating intraspecific trait variability and addressing more complex species interactions. We also recommend expanding the combination of trait-based approaches with individual-based modelling to simplify the parameterization of models, to capture plant-plant interactions at the individual level, and to explain community dynamics under global change.


2019 ◽  
Vol 447 (1-2) ◽  
pp. 537-551 ◽  
Author(s):  
Iris Dahlin ◽  
Lars P. Kiær ◽  
Göran Bergkvist ◽  
Martin Weih ◽  
Velemir Ninkovic

Abstract Aims Cultivar mixtures can increase productivity through complementarity in resource use, but reported results are often conflicting and the role of plasticity in shaping plant-plant interactions is poorly understood. We aim to determine if individual cultivars show different phenotypic responses when grown in a mixture, whether these responses depend on the neighboring cultivar identity, and how they contribute to variations in productivity and nitrogen (N) use. Methods Five spring barley cultivars were field-grown in pure stands and in mixtures during 2 years. Plant traits related to development, growth, N use, and reproduction were measured to identify temporal patterns of plastic responses to neighboring plants. Results Plants in mixtures were shorter and developed slower early in the season, but later on they grew faster and produced more grain than the corresponding pure stands. Some cultivars showed complementary N accumulation only when grown together with specific neighbors. Mechanisms of improved productivity differed between the individual mixtures. Conclusions Plastic plant-plant interaction between cultivars is an important driver behind the variability in mixing effects. Results contribute to a better understanding of how productivity in cultivar mixtures is affected by plastic adaptation and differentiation of plant traits, depending on the environment created by neighboring genotypes.


2020 ◽  
Vol 51 (3) ◽  
pp. 183-198
Author(s):  
Wiktor Soral ◽  
Mirosław Kofta

Abstract. The importance of various trait dimensions explaining positive global self-esteem has been the subject of numerous studies. While some have provided support for the importance of agency, others have highlighted the importance of communion. This discrepancy can be explained, if one takes into account that people define and value their self both in individual and in collective terms. Two studies ( N = 367 and N = 263) examined the extent to which competence (an aspect of agency), morality, and sociability (the aspects of communion) promote high self-esteem at the individual and the collective level. In both studies, competence was the strongest predictor of self-esteem at the individual level, whereas morality was the strongest predictor of self-esteem at the collective level.


2019 ◽  
Vol 37 (1) ◽  
pp. 18-34
Author(s):  
Edward C. Warburton

This essay considers metonymy in dance from the perspective of cognitive science. My goal is to unpack the roles of metaphor and metonymy in dance thought and action: how do they arise, how are they understood, how are they to be explained, and in what ways do they determine a person's doing of dance? The premise of this essay is that language matters at the cultural level and can be determinative at the individual level. I contend that some figures of speech, especially metonymic labels like ‘bunhead’, can not only discourage but dehumanize young dancers, treating them not as subjects who dance but as objects to be danced. The use of metonymy to sort young dancers may undermine the development of healthy self-image, impede strong identity formation, and retard creative-artistic development. The paper concludes with a discussion of the influence of metonymy in dance and implications for dance educators.


Author(s):  
Pauline Oustric ◽  
Kristine Beaulieu ◽  
Nuno Casanova ◽  
Francois Husson ◽  
Catherine Gibbons ◽  
...  

2020 ◽  
Author(s):  
Christopher James Hopwood ◽  
Ted Schwaba ◽  
Wiebke Bleidorn

Personal concerns about climate change and the environment are a powerful motivator of sustainable behavior. People’s level of concern varies as a function of a variety of social and individual factors. Using data from 58,748 participants from a nationally representative German sample, we tested preregistered hypotheses about factors that impact concerns about the environment over time. We found that environmental concerns increased modestly from 2009-2017 in the German population. However, individuals in middle adulthood tended to be more concerned and showed more consistent increases in concern over time than younger or older people. Consistent with previous research, Big Five personality traits were correlated with environmental concerns. We present novel evidence that increases in concern were related to increases in the personality traits neuroticism and openness to experience. Indeed, changes in openness explained roughly 50% of the variance in changes in environmental concerns. These findings highlight the importance of understanding the individual level factors associated with changes in environmental concerns over time, towards the promotion of more sustainable behavior at the individual level.


Sign in / Sign up

Export Citation Format

Share Document