scholarly journals Changes in dry matter, protein percentage and organic matter of soybean-oat and groundnut-oat intercropping in different growth stages in Jilin province, China

2018 ◽  
Vol 111 (1) ◽  
pp. 33
Author(s):  
Yang YONG ◽  
Yue-gao HU ◽  
Mohamad Hesam SHAHRAJABIAN ◽  
Chang-zhong REN ◽  
Lai-chun GUO ◽  
...  

<p>One of the most important and sustainable cropping practice is intercropping. The study was conducted under field conditions in the arid Horqine sandy land in Baicheng District, Jilin Province, Northern China in 2011. A randomized complete block design with four replications was used. Treatments comprised different mono cropping and intercropping patterns, TO: sole cropping of oat, TOS-O: oat in the intercropping of oat and soybean, TOG-O: oat in the intercropping of oat and groundnut, TS: sole cropping of soybean, TOS-S: soybean in intercropping of oat and soybean, TG: sole cropping of groundnut, TOG-G: groundnut in the intercropping of oat and groundnut. In mono-cropping systems, oat mono-cropping obtained the highest dry matter and nitrogen accumulation in all growth stages. The maximum protein percentage in all stages except for ripening stage, were for groundnut mono-cropping. Although, the maximum organic matter in ripening stage was achieved in mono-cropping of soybean, the highest one in other stages was related to groundnut mono-cropping. In intercropping patterns, oat in oat-groundnut obtained the highest dry matter in all stages. The highest value of protein percentage and organic matter in heading stage, grain filling stage, and grain dough stage was achieved in groundnut in oat-groundnut intercropping. Furthermore, the maximum value of protein percentage and organic matter in booting stage and ripening stage was related to soybean in oat-soybean intercropping. The results of this study clearly indicate that intercropping oat and groundnut affects the growth rate of the individual species in mixtures as well as the dry matter yield and nitrogen accumulation. This information can help in the adaptation of oat- intercrops for increased forage production in new cropping systems.</p>

2017 ◽  
Vol 50 (3) ◽  
pp. 25-35
Author(s):  
Y. Yong ◽  
Y. Hu ◽  
M.H. Shahrajabian ◽  
C. Ren ◽  
L. Guo ◽  
...  

Abstract Intercropping is one of the most important and sustaibale cropping practice in agro-ecosystems. The study was conducted under field conditions in the arid Horqine sandy land in Baicheng District, Jilin Province, Northern China in 2011. A randomized complete block design with four replications was used. Treatments comprised different mono cropping and intercropping patterns, TO: sole cropping of oat, TOS-O: oat in the intercropping of oat and soybean, TOG-O: oat in the intercropping of oat and groundnut, TS: sole cropping of soybean, TOS-S: soybean in intercropping of oat and soybean, TG: sole cropping of groundnut, TOG-G: groundnut in the intercropping of oat and groundnut. In intercropping patterns, oat in oat-groundnut had obtained the highest dry matter in all stages. The highest value of protein percentage and organic matter in heading stage, grain filling stage, and grain dough stage was achieved in groundnut in oatgroundnut intercropping. The maximum value of protein percentage and organic matter in booting stage and ripening stage was related to soybean in oat-soybean intercropping. The results of this study clearly indicate that intercropping oat and groundnut affects the growth rate of the individual species in mixtures as well as the dry matter yield and nitrogen accumulation. The highest seed yield was obtained for mono-cropping of soybean, followed by mono-cropping of groundnut and oat. Oat seed yield intercropping of oat and groundnut, and intercropping of oat and soybean were 1208.00 kg/ha, and 832.3 kg/ha, respectively. The highest grain yield was obtained when soybean was grown together with oat, where the higher yield of intercrop is due to the better usage of nutrient, water and light. LER in all intercropping patterns were higher than 1. LER in intercropping of soybean and oat, and intercropping of groundnut and oat were 1.41, and 1.30, respectively. With these LER values, 29.07% and 23.07% of land were, respectively, saved in intercropping of soybean and oat, and intercropping of groundnut and oat, respectively, which could be used for other agricultural purposes. In both intercropping of soybean and oat, and intercropping of groundnut and oat, CI were less than 1, which means that both these two intercropping patterns have positive effects.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 354
Author(s):  
Sebastian Munz ◽  
David Reiser

Intercropping systems of cereals and legumes have the potential to produce high yields in a more sustainable way compared to sole cropping systems. Their agronomic optimization remains a challenging task given the numerous management options and the complexity of interactions between the crops. Efficient methods for analyzing the influence of different management options are needed. The canopy cover of each crop in the intercropping system is a good determinant for light competition, thus influencing crop growth and weed suppression. Therefore, this study evaluated the feasibility to estimate canopy cover within an intercropping system of pea and oat based on semantic segmentation using a convolutional neural network. The network was trained with images from three datasets during early growth stages comprising canopy covers between 4% and 52%. Only images of sole crops were used for training and then applied to images of the intercropping system. The results showed that the networks trained on a single growth stage performed best for their corresponding dataset. Combining the data from all three growth stages increased the robustness of the overall detection, but decreased the accuracy of some of the single dataset result. The accuracy of the estimated canopy cover of intercropped species was similar to sole crops and satisfying to analyze light competition. Further research is needed to address different growth stages of plants to decrease the effort for retraining the networks.


1971 ◽  
Vol 11 (48) ◽  
pp. 18 ◽  
Author(s):  
DJ Minson

The digestibility and voluntary intake of P. coloratum CV. Kabulabula, P. coloratum var. Makarikariense CV. Burnett and C.P.I. 13372, P. maximum var. trichoglume CV. Petrie Green Panic, P. maximum cv. Coloniao guinea grass and Hamil were measured with sheep in metabolism pens. Each grass was cut eight to ten times at different growth stages and times of the year. Varieties differed (P<0.01) in their dry matter and organic matter digestibility but the maximum mean difference between varieties was only 2.8 and 3.4 per cent respectively. There were large differences in voluntary intake between grasses. P. maximum cv. Hamil had a voluntary intake 50 and 27 per cent greater than P. coloratum cv. Kabulabula when both had p dry matter digestibility of 50 and 60 per cent respectively. Voluntary intake of digestible organic matter of P. maximum CV. Hamil was 26 per cent higher than that of P. coloratum CV. Kabulabula. The higher intake of P. maximm occurred despite its having higher silicon percentages than P. coloratum. It was concluded that because of the biased relation between intake and digestibility selection of grasses on the basis of digestibility determinations alone could be a misleading guide to their nutritional value.


Author(s):  
GM Mohsin ◽  
M Alauddin ◽  
M Rahman ◽  
MK Uddin ◽  
FF Meem ◽  
...  

A field experiment was carried out in the paddy field of Charfession Govt. College, Bhola, Bangladesh during rabi season 2017 to evaluate growth, biomass production and nitrogen accumulation in mungbean plants. The size of the plot was 60 cm x 45 cm. The distance between row to row and plant to plant was 30 cm and 10 cm, respectively. Eight plants were raised per plot. Seven treatments were P0K0 (Control), P5K6, P5K12, P5K18, P10K6, P10K12 and P10K18 kg ha-1. Forty day old plants were harvestedas root, stem and leaf. The highest plant height (17.2 cm) and number of leaves (14.3 no. plant-1) were recorded in P5K12 kg ha-1 treatment at harvest. The maximum concentration of nitrogen in root, stem and leaf were 1.59, 2.51 and 3.82% in the treatments of P5K12, P5K12 and P5K18 kg ha-1, respectively. The highest amount of dry matter yield 1.88 g plant-1 was observed in P5K12 kg ha-1 treatment. The overall better dose was P5K12 kg ha-1. Thus, a considerable amount of nitrogen and organic matter might be added to paddy fields through the cultivation of mungbean in the coastal region of Bangladesh. Int. J. Agril. Res. Innov. & Tech. 9 (1): 14-17, June, 2019


1966 ◽  
Vol 2 (2) ◽  
pp. 113-117
Author(s):  
G. L. Mabey ◽  
R. Rose Innes

SummaryDigestibility of the palatable indigenous shrub Grewia carpinifolia was investigated. Digestion coefficients (%) were—organic matter 70, dry matter 70, crude protein 78, crude fibre 54, nitrogenfree extract 81, ether extract 13 and ash 52. Calculated nutritive values were—starch equivalent 27.3 and digestible crude protein 5.0, giving a nutritive ratio of about 1 : 5. The material used was moderately young.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Saba Baba Mohammed ◽  
Daniel Kwadjo Dzidzienyo ◽  
Muhammad Lawan Umar ◽  
Mohammad Faguji Ishiyaku ◽  
Pangirayi Bernard Tongoona ◽  
...  

Abstract Background Low plant density and wide intra-plant spacing in traditional cowpea cropping systems are among the factors responsible for low yield on farmers’ fields. Sole cropping and improved intercropping systems have been advocated in the last few years to increase yield in the dry savannah areas of Nigeria. This study investigated the level of adoption of high yielding cowpea cropping systems including factors that influenced their use and farmers’ perceived production constraints and preferences. A total of 420 farmers across 36 villages of northern Nigeria were interviewed, and data collected was analyzed using descriptive statistics to appraise farmers predominant cowpea cropping systems and factors that determine the use of sole versus intercropping were identified with the aid of binary logit regression. Furthermore, pairwise comparison ranking was deployed to understand farmers’ view of cowpea production constraints and preferred traits. Results The results revealed that, many of the farmers (42%) still grow cowpeas in the traditional intercropping and a good number (25%) cultivate the crop as a sole crop, while 23% had fields of cowpeas in both sole and intercropping systems. Farmers reported the incidence of high insect pests, limited access to land, desire to have multiple benefits, and assurance in the event of crop failure as reasons for preference for intercropping over sole planting. The pairwise comparison ranking of constraints and preferences revealed insect pests, Striga, drought and poor access to fertilizers as major constraints to increased productivity. Many farmers indicated high yield as the most preferred trait. Conclusions Findings indicate a need for increased education and training of cowpea farmers on the importance of growing cowpeas in sole cropping and or improved intercropping systems. Genetic improvement efforts should focus on developing cowpea varieties that address farmers production constraints and reflect the diversity of consumers’ preferences for the crop. Hence, breeding for resistance to insect pests and high yield is recommended as an important priority of cowpea breeding programmes in the region.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 307
Author(s):  
Dawid Wojcieszak ◽  
Maciej Zaborowicz ◽  
Jacek Przybył ◽  
Piotr Boniecki ◽  
Aleksander Jędruś

Neural image analysis is commonly used to solve scientific problems of biosystems and mechanical engineering. The method has been applied, for example, to assess the quality of foodstuffs such as fruit and vegetables, cereal grains, and meat. The method can also be used to analyse composting processes. The scientific problem lets us formulate the research hypothesis: it is possible to identify representative traits of the image of composted material that are necessary to create a neural model supporting the process of assessment of the content of dry matter and dry organic matter in composted material. The effect of the research is the identification of selected features of the composted material and the methods of neural image analysis resulted in a new original method enabling effective assessment of the content of dry matter and dry organic matter. The content of dry matter and dry organic matter can be analysed by means of parameters specifying the colour of compost. The best developed neural models for the assessment of the content of dry matter and dry organic matter in compost are: in visible light RBF 19:19-2-1:1 (test error 0.0922) and MLP 14:14-14-11-1:1 (test error 0.1722), in mixed light RBF 30:30-8-1:1 (test error 0.0764) and MLP 7:7-9-7-1:1 (test error 0.1795). The neural models generated for the compost images taken in mixed light had better qualitative characteristics.


Euphytica ◽  
2021 ◽  
Vol 217 (7) ◽  
Author(s):  
John E. Bradshaw

AbstractExperimental results are brought together to demonstrate that forage kale population improvement involving full-sib and selfed families can be done on an annual cycle, followed by production of a synthetic cultivar. Furthermore, this new breeding method compares favourably with the two successful methods used to date, namely triple-cross hybrid cultivars from inbreeding and crossbreeding programmes and open-pollinated cultivars from population improvement programmes. The key findings were that natural vernalization of kale in south east Scotland occurred by mid-December so that plants could be pollinated in a glasshouse with heating and lighting by the end of February and seed harvested by the end of May. The resulting full-sib or selfed families could be assessed in a field transplant trial in the same year, from June to November, thus completing an annual cycle. Self-pollination resulted in shorter plants with lower fresh-weight, dry-matter and digestible organic-matter yields, and undesirably higher contents of S-methylcysteine sulphoxide, the haemolytic anaemia factor, and the goitrogenic thiocyanate ion. As a consequence of digestible organic-matter yield being reduced by as much as 22%, the estimated optimum number of selfed parents in a synthetic cultivar was four to eight. Synthetic cultivars are expected to yield as well as triple-cross hybrids as there was no reduction in yield when the latter were open-pollinated.


Sign in / Sign up

Export Citation Format

Share Document