The gene mutations and subtelomeric DNA methylation in immunodeficiency, centromeric instability and facial anomalies syndrome

Autoimmunity ◽  
2019 ◽  
Vol 52 (5-6) ◽  
pp. 192-198
Author(s):  
Haochang Hu ◽  
Chujia Chen ◽  
Shanping Shi ◽  
Bin Li ◽  
Shiwei Duan
2019 ◽  
Vol 63 (6) ◽  
pp. 773-783 ◽  
Author(s):  
Maja Vukic ◽  
Lucia Daxinger

Abstract DNA methylation is an epigenetic modification essential for normal mammalian development. Initially associated with gene silencing, more diverse roles for DNA methylation in the regulation of gene expression patterns are increasingly being recognized. Some of these insights come from studying the function of genes that are mutated in human diseases characterized by abnormal DNA methylation landscapes. The first disorder to be associated with congenital defects in DNA methylation was Immunodeficiency, Centromeric instability, Facial anomalies syndrome (ICF). The hallmark of this syndrome is hypomethylation of pericentromeric satellite repeats, with mutations in four genes: DNMT3B, ZBTB24, CDCA7 and HELLS, being linked to the disease. Here, we discuss recent progress in understanding the molecular interactions between these genes and consider current evidence for how aberrant DNA methylation may contribute to the abnormal phenotype present in ICF syndrome patients.


Diseases ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 34 ◽  
Author(s):  
Georgios Sogkas ◽  
Natalia Dubrowinskaja ◽  
Anke K. Bergmann ◽  
Jana Lentes ◽  
Tim Ripperger ◽  
...  

Immunodeficiency, centromeric instability and facial anomalies syndrome 2 (ICF2) is a rare autosomal recessive primary immunodeficiency disorder. So far, 27 patients have been reported. Here, we present three siblings with ICF2 due to a homozygous ZBTB24 gene mutation (c.1222 T>G, p. (Cys408Gly)). Immune deficiency in these patients ranged from late-onset combined immunodeficiency (CID) with severe respiratory tract infections and recurrent shingles to asymptomatic selective antibody deficiency. Evident clinical heterogeneity manifested despite a common genetic background, suggesting the pathogenic relevance of epigenetic modification. Immunological follow-up reveals a previously unidentified gradual depletion of B and CD4+ T cells in all three presented patients with transition of a common variable immunodeficiency (CVID)-like disease to late-onset-CID in one of them. Considering all previously published cases with ICF2, we identify inadequate antibody responses to vaccines and reduction in CD27+ memory B cells as prevalent immunological traits. High mortality among ICF2 patients (20%) together with the progressive course of immunodeficiency suggest that hematopoietic stem cell transplantation (HSCT) should be considered as a treatment option in due time.


2017 ◽  
Vol 13 (11) ◽  
pp. e1005840 ◽  
Author(s):  
Yun-Ching Chen ◽  
Valer Gotea ◽  
Gennady Margolin ◽  
Laura Elnitski

Digestion ◽  
2020 ◽  
pp. 1-8
Author(s):  
Genki Usui ◽  
Keisuke Matsusaka ◽  
Yasunobu Mano ◽  
Masayuki Urabe ◽  
Sayaka Funata ◽  
...  

<b><i>Background:</i></b> Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. GC is a pathologically and molecularly heterogeneous disease. DNA hypermethylation in promoter CpG islands causes silencing of tumor-suppressor genes and thus contributes to gastric carcinogenesis. In addition, various molecular aberrations, including aberrant chromatin structures, gene mutations, structural variants, and somatic copy number alterations, are involved in gastric carcinogenesis. <b><i>Summary:</i></b> Comprehensive DNA methylation analyses revealed multiple DNA methylation patterns in GCs and classified GC into distinct molecular subgroups: extremely high-methylation epigenotype uniquely observed in GC associated with Epstein-Barr virus (EBV), high-methylation epigenotype associated with microsatellite instability (MSI), and low-methylation epigenotype. In The Cancer Genome Atlas classification, EBV and MSI are extracted as independent subgroups of GC, whereas the remaining GCs are categorized into genomically stable (GS) and chromosomal instability (CIN) subgroups. EBV-positive GC, exhibiting the most extreme DNA hypermethylation in the whole human malignancies, frequently shows <i>CDKN2A</i> silencing, <i>PIK3CA</i> mutations, <i>PD-L1/2</i> overexpression, and lack of <i>TP53</i> mutations. MSI, exhibiting high DNA methylation, often has <i>MLH1</i> silencing and abundant gene mutations. GS is generally a diffuse-type GC and frequently shows <i>CDH1/RHOA</i> mutations or <i>CLDN18–ARHGAP</i> fusion. CIN is generally an intestinal-type GC and frequently has <i>TP53</i> mutations and genomic amplification of receptor tyrosine kinases. <b><i>Key Messages:</i></b> The frequency and targets of genetic aberrations vary depending on the epigenotype. Aberrations in the genome and epigenome are expected to synergistically interact and contribute to gastric carcinogenesis and comprehensive analyses of those in GCs may help elucidate the mechanism of carcinogenesis.


2014 ◽  
Vol 55 (11) ◽  
pp. 2652-2655 ◽  
Author(s):  
Rocío N. Salgado ◽  
Juliane Menezes ◽  
Maria Calvente ◽  
Javier Suela ◽  
Francesco Acquadro ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2425-2425
Author(s):  
Go Yamamoto ◽  
Fumihiko Nakamura ◽  
Mitsuru Iio ◽  
Motohiro Kato ◽  
Yasuhito Nannya ◽  
...  

Abstract Myelodysplastic syndromes are heterogeneous groups of clonal hematopoietic disorders characterized by ineffective blood cells production and predisposition to acute myeloid leukemia, and as such, it is well established that these syndromes actually represent neoplastic processes in which a series of gene mutations accumulate in blood cell precursors, leading to neoplastic expansion of dominant clones. During the past two decades, a number of genetic abnormalities have been described in MDS cases, including copy number alterations of particular chromosomal segments, mutations of Ras, p53, runx1, and Flt3 genes, and translocation involving Evi-1 family genes, TEL, MLL and Nup98 genes. On the other hand, epigenetic abnormalities are also thought to play an important role in the pathogenesis of MDS, because demethylating agents such as 5-azacydine and decitabine are often effective for high risk MDS. Unfortunately, however, only a few genes, such as INK4B gene, have been implicated in MDS pathogenesis. Especially, no genome-wide analysis of epigenetic changes in MDS has been reported. So, in the current study, we comprehensively investigated abnormalities of DNA methylation in 30 MDS specimens, using Affymetrix tiling array combined with methylated DNA immunoprecipitation (MeDIP). In this method, genomic DNA from MDS specimens was first fragmentized with ultrasonication and immuno-precipitated with anti-methylcytosine antibody (MeDIP). The immunoprecipitated DNA was then amplified by PCR and subjected to hybridization to the promorter tiling array. In this array, regulatory regions of more than 25,000 genes are tiled by 6.5 millions of oligonucleotide probes to enable sensitive detection of target sequences and approximately 59% of CpG islands in the human genomes are covered in a single array. The extent and distribution of methylation were highly variable between specimens, although some CpG islands, such as p15INK4B and HOX gene clusters, seemed to be commonly involved in different cases (Figure). In conclusion, MeDIP on chip analysis could be a powerful method for genome-wide detection of DNA methylation and facilitate our understanding of the pathogenesis of MDS. Figure Figure


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1407-1407
Author(s):  
Hsiao-Wen Kao ◽  
Lee-Yung Shih ◽  
Ming-Chung Kuo ◽  
Tung-Liang Lin ◽  
Sung-Tzu Liang ◽  
...  

Abstract Background and purpose Abnormalities of genes regulating DNA methylation have been described in acute myeloid leukemia (AML). MLL protein is a transcriptional regulator and governs proper hematopoiesis through its histone methyltransferase activity. AML with partial tandem duplication of MLL (MLL-PTD) was associated with an unfavorable prognosis. The cooperating roles of MLL-PTD with other mutated genes regulating DNA methylation have not been comprehensively studied in AML. We aimed to determine the prevalence and clinical impact of mutations of DNA methylation regulators in AML with MLL-PTD. Materials and methods Bone marrow samples from 98 AML patients with MLL-PTD were analyzed for gene mutations of TET2, DNMT3A, IDH1 and IDH2. MLL-PTD was screened by RT-PCR and confirmed by real-time quantitative PCR assays. The mutational analysis was performed with PCR assays followed by direct sequencing for TET2 (whole coding exons 3–11) and IDH1/2 (hotspots exon 4). For the detection of DNMT3A mutations, the PCR products amplified for entire coding exons 2 to 23 were first screened with denaturing high-performance liquid chromatography followed by direct sequencing for the abnormal profiles. Results The frequency of TET2, IDH1, IDH2 and DNMT3A mutations in AML patients with MLL-PTD was 17.0% (16/94), 10.2% (10/98), 18.4% (18/98), and 31.6% (31/98), respectively. Taken together, 61.1% of patients with MLL-PTD had at least one mutated gene of DNA methylation regulators. TET2, IDH1 and IDH2 mutations were mutually exclusive with each other whereas DNMT3A mutations frequently co-existed with other DNA methylation modifiers:TET2 (n=8), IDH1 (n=5) and IDH2 (n=4). No differences were observed between the mutation status of the DNA methylation modifiers and clinico-hematologic features of patients with MLL-PTD except that TET2 (P=0.012) and DNMT3A (P=0.024) mutations were associated with older age. Of the 55 MLL-PTD patients who received standard chemotherapy, IDH2 mutation was associated with a lower complete remission rate (25.0% vs 67.8%, P=0.018), while DNMT3A mutations conferred an inferior event-free survival (0.0 vs 6.8 months, P=0.027) and overall survival (6.0 vs 11.5 months, P=0.032). In multivariate analysis, older age (P=0.008) and DNMT3A mutations (P=0.049) were independent adverse factors for overall survival. The crosstalk between MLL-PTD and genes involving DNA methylation in the leukemogenesis of AML warrants further investigation. Conclusions Gene mutations involving DNA methylation frequently co-existed in AML patients with MLL-PTD, especially DNMT3A mutations which conferred a poor outcome. Our study demonstrated the importance of genetic alterations involving DNA methylation in the pathogenesis of MLL-PTD AML and provided potential epigenetic-targeted therapy. Grant support The work was supported by NHRI-EX93-9011SL, NSC95-2314-B-195-001, NSC96-2314-B-195-006-MY3, NSC97-2314-B-182-011-MY3 and MMH-E-101-09. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 825-825
Author(s):  
Luca Malcovati ◽  
Mohsen Karimi ◽  
Elli Papaemmanuil ◽  
Ilaria Ambaglio ◽  
Martin Jadersten ◽  
...  

Abstract Ring sideroblasts (RS) characterize a group of myelodysplastic syndromes (MDS) categorized in the WHO classification as refractory anemia with RS (RARS) or refractory cytopenia with multilineage dysplasia and RS (RCMD-RS), according to the presence of 15% or more bone marrow RS and dysplasia in one or more myeloid lineages. A high prevalence of somatic mutations in SF3B1 was reported in MDS with RS [N Engl J Med 2011;365:1384-95], and recent unsupervised analyses suggested that MDS with SF3B1 mutation represent a homogeneous subset [Blood 2014 Jun 26]. In this study, we performed a comprehensive mutation analysis of genes implicated in myeloid disorders in a large and well-characterized cohort of myeloid neoplasms with 1% or more RS with the aim to identify mutation patterns that affect disease phenotype and clinical outcome. The study population consisted of 309 patients (pts), including: a) 244 with MDS, of whom 160 assigned to sideroblastic categories (RARS, RCMD-RS) and 84 to other WHO categories [34 RA or RCMD, 7 MDS with isolated del(5q), 20 RAEB-1, 23 RAEB-2]; b) 51 with myelodysplastic/myeloproliferative neoplasms (MDS/MPN: 9 CMML, 42 RARS-T); c) 14 with AML-MDS. SF3B1 mutations were observed in 151/244 pts with MDS and RS (62%). Within sideroblastic categories, SF3B1 mutation was found in 81/91 cases of RARS (89%), and 48/69 RCMD-RS (70%). Among pts classified in other MDS categories, significantly lower rate of SF3B1 mutations (22/84, P<.001) and higher prevalence of mutations in other RNA splicing factors (SRSF2, U2AF1, ZRSR2) (P<.001) were observed. Pts with MDS carrying SF3B1 mutation showed a limited pattern of recurrently co-mutated genes including those involved in DNA methylation (39%), chromatin modification (10%), and RUNX1 (5%). Variant allele frequencies (VAFs) analysis showed that in most cases (91%) SF3B1 mutation was in the dominant clone. Within SF3B1-negative MDS with RS, a significantly higher prevalence of mutations in TP53 was found (9/93, P=.001), 6 of 9 cases showing disease phenotype with multilineage dysplasia and no excess blasts. In a multivariable analysis, pts with SF3B1 mutation showed significantly better overall survival (OS) (HR .39, P=.001) and lower risk of disease progression (HR=.40, P=.024) compared with SF3B1-unmutated cases. The independent prognostic value of SF3B1 mutations was retained when the analysis was limited to sideroblastic categories (OS: HR=.32, P=.005; risk of progression: HR=.27, P=.036). Then, we focused on MDS associated with SF3B1 mutation (defined by SF3B1 mutation, no excess blasts or del(5q): 81 RARS, 48 RCMD-RS, 4 RA or RCMD) with the aim to identify genetic determinants of disease phenotype. We found that mutations in DNA methylation genes (TET2, DNMT3A) were significantly associated with multilineage dysplasia (P=.015). The analysis of VAFs showed that in 90% of cases there was no statistical evidence of subclonality of these gene mutations. When comparing pts with uni- or multilineage dysplasia, no significant difference was observed in hematological parameters. In addition, no significant effect of multilineage dysplasia was found on OS (P=.5) and risk of progression (P=.92). Taken together, these results suggest that MDS associated with SF3B1 mutation is indeed a homogeneous subset, and should be recognized as a distinct disease entity within MDS, irrespective of current WHO criteria. We then used Cox regression models in SF3B1-mutant MDS with the aim to identify mutation patterns associated with relevant clinical outcomes, including RBC transfusion-dependency, risk of disease progression and survival. We found that mutations in chromatin modifiers (ASXL1, EZH2) were significantly associated with development of transfusion-dependency (HR=3.85, P=.006). In addition, mutations in RUNX1 were significantly associated with worse OS (HR=6.98, P=.012) and increased risk of progression (HR=5.63, P=.023). Unambiguous statistical evidence of subclonality of these gene mutations was obtained in 46% of cases. In conclusion, this study shows that SF3B1 mutations identify a distinct subset of MDS with homogeneous features and favorable prognosis irrespective of current WHO classification criteria. Within MDS associated with SF3B1 mutation, concurrent or subclonal mutations in genes involved in DNA methylation, chromatin modification and RUNX1 account for variability in disease phenotype and clinical outcomes. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document