Effect of nano-SiO2 particles modified by 3-aminopropyltriethyloxy silane on mechanical properties and thermal stability of meta-aramid insulation paper

2021 ◽  
pp. 1-9
Author(s):  
Xu Li ◽  
Zhiwei Li ◽  
Jinghong Liu ◽  
Hao Bai ◽  
Xueshi Yuan ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 766
Author(s):  
Zhengxiang Zhang ◽  
Haibin Zhou ◽  
Wentao Li ◽  
Chao Tang

Cellulose is an important part of transformer insulation paper. Thermal aging of cellulose occurs in long-term operation of transformers, which deteriorates the mechanical properties and thermal stability of cellulose, resulting in a decrease in the transformer life. Therefore, improvement of the mechanical properties and thermal stability of cellulose has become a research hotspot. In this study, the effects of different silane coupling agents on the mechanical properties and thermal stability of modified cellulose were studied. The simulation results showed that the mechanical parameters of cellulose are only slightly improved by KH560 (γ-glycidyl ether oxypropyl trimethoxysilane) and KH570 (γ-methylacrylloxy propyl trimethoxy silane) modified nano-SiO2, while the mechanical parameters of cellulose are greatly improved by KH550 (γ-aminopropyl triethoxy silane) and KH792 (N-(2-aminoethyl)-3-amino propyl trimethoxy silane) modified nano-SiO2. The glass-transition temperature of the composite model is 24 K higher than that of the unmodified model. The mechanism of the change of the glass-transition temperature was analyzed from the point of view of free-volume theory. The main reason for the change of the glass-transition temperature is that the free volume abruptly changes, which increases the space for movement of the cellulose chain and accelerates the whole movement of the molecular chain. Therefore, modifying cellulose with KH792-modified nano-SiO2 can significantly enhance the thermal stability of cellulose.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2903
Author(s):  
Juvenal Giogetti Nemaleu Deutou ◽  
Rodrigue Cyriaque Kaze ◽  
Elie Kamseu ◽  
Vincenzo M. Sglavo

The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.


Sign in / Sign up

Export Citation Format

Share Document