High pressure measurement ofn-dodecane heat capacity up to 100 MPa. Calculation from equations of state

2000 ◽  
Vol 18 (1-6) ◽  
pp. 279-284 ◽  
Author(s):  
D. Bessières ◽  
H. Saint-Guirons ◽  
J.-L. Daridon
1986 ◽  
Vol 33 (6) ◽  
pp. 4221-4226 ◽  
Author(s):  
Samuel T. Weir ◽  
Yogesh K. Vohra ◽  
Arthur L. Ruoff

2021 ◽  
Vol 11 (8) ◽  
pp. 1269-1287
Author(s):  
Xiangyu Huo ◽  
Li Zhang ◽  
Mingli Yang

Energetic materials (EMs) are one of the necessities in many military and civilian applications. Measuring the thermodynamic behaviors of detonation products of EMs at high temperature and high pressure, their equations of state (EOSs) not only serve as a basis in the design of novel materials, but also provide valuable information for their practical applications. The EOS study has a long history, but keeps moving all the time. Various EMs have been developed, the EOS of detonation products provides abundant information in the thermochemistry, hydromechanics and detonation physics, which in turn feedbacks the development of novel EMs and their EOSs. With the development of experimental techniques and computer simulations, many EOSs have been proposed for various explosives in recent years. While experiments keep their fundamental roles, integrated theory-experiment study has become the main approach to the EOS establishment for novel EMs. Moreover, computer simulations based on interatomic and/or intermolecular interaction will have great potential in the future when big data and artificial intelligence are introduced into the field.


1996 ◽  
Vol 198 (1) ◽  
pp. 337-341 ◽  
Author(s):  
D. Patel ◽  
K. Interholzinger ◽  
P. Thiagarajan ◽  
G. Y. Robinson ◽  
C. S. Menoni

Sensors ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 736 ◽  
Author(s):  
Guodong Zhang ◽  
Yulong Zhao ◽  
Yun Zhao ◽  
Xinchen Wang ◽  
Xueyong Wei ◽  
...  

2007 ◽  
Vol 46 (5A) ◽  
pp. 3090-3095 ◽  
Author(s):  
Fumiaki Tomioka ◽  
Izuru Umehara ◽  
Takashi Ono ◽  
Masato Hedo ◽  
Yoshiya Uwatoko ◽  
...  

2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Romulo Carvalho ◽  
Fernando Moraes

Abstract We investigate three formulations for computing acoustic velocity of natural gas and derive an equation for the heat capacity ratio, which plays a central role in these formulations. The first formulation is a compilation of fundamental equations available in the engineering literature, referred to as the DASH formulation. The second formulation is a development from the first, in which we use the derived equation for the heat capacity ratio (modified DASH). The third formulation is a mainstream method implemented in Geoscience (BW formulation). All three formulations stem from virial Equations of State that take preponderance in the exploration stage, when the detailed fluid composition is unknown and compositional methods are frequently inapplicable. We test the formulations on an extensive experimental data set of acoustic velocity of natural gases and compare the resulting accuracies. Both DASH and modified DASH formulations provide significantly higher accuracy when compared to the BW formulation. Additionally, the modified DASH, as we derive in this work, has the highest accuracy at pressures above 7000 psi, a condition typically encountered in the Brazilian pre-salt reservoirs. In a final step, we investigate how these different formulations and corresponding accuracies in velocity computation may affect seismic modeling, using a single interface model between a dense gas reservoir and a sealing rock. A direct comparison of amplitude versus offset modeling using our modified DASH formulation and the BW formulation shows up to 50% difference in amplitude calculation in a sensitivity exercise, especially at the longer offsets and higher pressures.


Sign in / Sign up

Export Citation Format

Share Document