Laboratory set-up for X-ray diffraction at high pressures

2011 ◽  
Vol 31 (4) ◽  
pp. 611-619 ◽  
Author(s):  
Catalin Popescu ◽  
Loreynne Pinsard-Gaudart ◽  
Nita Dragoe
Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
Innokenty Kantor ◽  
Alexander Kurnosov ◽  
Catherine McCammon ◽  
Leonid Dubrovinsky

AbstractA high-pressure quasi-single crystal X-ray diffraction study of a synthetic iron oxide Fe


2005 ◽  
Vol 61 (10) ◽  
pp. 2418-2422 ◽  
Author(s):  
Li Chung Ming ◽  
Shiv K. Sharma ◽  
A.J. Jayaraman ◽  
Y. Kobayashi ◽  
E. Suzuki ◽  
...  

1997 ◽  
Vol 34 (6) ◽  
pp. 875-882 ◽  
Author(s):  
Tara L. Hicks ◽  
Richard A. Secco

The dehydration and decomposition of South African pyrophyllite were studied in the pressure range 2.5–5.0 GPa and in the temperature (T) range 295–1473 K using both in situ electrical conductivity measurements and X-ray diffraction studies on the recovered samples. Activation energies for conduction (Qc) vary in the range 0.02–0.07 eV for T ≤ 500 K where the dominant conduction mode is electronic, and Qc is in the range 1.10–1.28 eV for T ≥ 500 K where ionic conduction dominates. Abrupt changes in the isobaric temperature dependence of conductivity mark the onset of dehydration and subsequent decomposition into kyanite plus quartz–coesite. At 2.5 GPa, South African pyrophyllite forms the dehydroxylate phase at 760 K with a pressure dependence of ~30 K/GPa and complete decomposition follows at 1080 K with a pressure dependence of ~41 K/GPa. The resulting pressure–temperature phase diagram is in very good agreement with many previous studies at 1 atm (101.325 kPa).


1998 ◽  
Vol 7 ◽  
pp. 310-312 ◽  
Author(s):  
Y. Kobayashi ◽  
S. Endo ◽  
K. Deguchi ◽  
L. C. Ming ◽  
S. R. Shieh ◽  
...  

2019 ◽  
Vol 36 (4) ◽  
pp. 046103 ◽  
Author(s):  
Sheng Jiang ◽  
Jing Liu ◽  
Xiao-Dong Li ◽  
Yan-Chun Li ◽  
Shang-Ming He ◽  
...  

2015 ◽  
Vol 08 (05) ◽  
pp. 1550063 ◽  
Author(s):  
Sara Hoomi ◽  
Ramin Yousefi ◽  
Farid Jamali-Sheini ◽  
Abdolhossein Sáaedi ◽  
Mohsen Cheraghizade ◽  
...  

PbSe nanostructures were synthesized by selenization of lead sheets in a chemical vapor deposition (CVD) set-up under a selenium ambiance. The lead sheets were placed in the different temperature zones, between 300°C and 450°C. Field emission scanning electron microscope (FESEM) images showed that, PbSe nanostructures grown on the lead sheets with different morphologies. PbSe nanostructures with flakes shape were grown on the lead sheets that were placed in the lower temperature, while PbSe nanocubes and nanorods, which were grown on the nanocubes, were grown on the lead sheets in the higher temperature. The phase and composition of the product were identified by X-ray diffraction (XRD) pattern and X-ray photoelectron spectra (XPS). The XRD and XPS results showed that, the PbSe phase was started to form after 350°C and completed at 450°C. However, the XPS results showed that the Se concentration was different in the samples. In addition, Raman measurements confirmed the XRD and XPS results and indicated three Raman active modes, which belonged to PbSe phase for the nanostructures. The optical properties of the products were characterized by UV–Vis. The optical characterization results showed a band gap for the PbSe nanostructures in the infrared region.


Sign in / Sign up

Export Citation Format

Share Document