Damage initiation and growth in composite laminates during open hole compression tests

2012 ◽  
Vol 21 (3) ◽  
pp. 209-220 ◽  
Author(s):  
Hiroshi Suemasu ◽  
Yosuke Naito ◽  
Katsuhisa Gozu ◽  
Yuichiro Aoki
2017 ◽  
Vol 36 (20) ◽  
pp. 1473-1486 ◽  
Author(s):  
Song Zhou ◽  
Yi Sun ◽  
Boyang Chen ◽  
Tong-Earn Tay

The sizes effects on the strengths of open-hole fibre-reinforced composite laminates subjected to tensile loading (OHT) have been investigated widely. However, little attention has been paid to the influence of material orthotropy. This paper presents a progressive damage model for the model failure of notched laminates under tensile loading based on continuum damage mechanics and cohesive elements. The effects of orthotropy on the failure of notched laminates with seven different ply sequences are investigated by our proposed model. The prediction results adopting the Hoffman and Pinho failure criterions to determine matrix damage initiation are compared with the results of experiments. Our proposed models are able to predict the strong influence of orthotropy on strengths of open-hole laminate under tension, and model using Pinho criterion can predict the open-hole tension strength most accurately.


Author(s):  
Mohammed Y Abdellah

Nominal strength prediction remains the main challenge in the field of design and manufacturing of composite laminates. An approximate model to study the stress distribution around a circular hole in composite laminates is derived in this study. This model is constructed using well-known cohesive zone models and mainly depends on the un-notch strength and in-plane fracture toughness. The model attempts to modify and extend the specimen size effect curves, extracted using two-parameter cohesive laws (linear, exponential, and constant), into a biaxial stress state. It successfully predicts the damage initiation, propagation, and fracture of multidirectional composite laminates. Moreover, the stress concentration factor for a composite plate under varying biaxiality is calculated.


2015 ◽  
Vol 819 ◽  
pp. 411-416
Author(s):  
S.N. Fitriah ◽  
M.S. Abdul Majid ◽  
R. Daud ◽  
M. Afendi ◽  
Z.S. Nazirah

The paper discusses the crushing behavior of glass fibre reinforced epoxy (GRE) pipes under hydrothermal ageing condition. This study determines the behavior of the GRE pipes when subjected to different ageing periods and temperatures. Hydrothermal ageing has been found to cause degradation between resin and fibre interface thus causing the reduction in the strength of composite laminates. The pipes were subjected to hydrothermal condition to simulate and precipitate ageing by immersing the pipe samples in water at 80°C for 250, 500, and 1000 hours. Compression tests were carried out using Universal Testing Machine (UTM) for virgin condition and aged samples in accordance with ASTM D695 standard. The maximum force at the initial failure region is observed for each of the conditioned pipes. The results show that the strength of the matrix systems was considerably degraded due to the plasticization of the matrix system.


2021 ◽  
Vol 262 ◽  
pp. 113628
Author(s):  
Zhaoyang Ma ◽  
Jianlin Chen ◽  
Qingda Yang ◽  
Zheng Li ◽  
Xianyue Su

2020 ◽  
Vol 11 (1) ◽  
pp. 185
Author(s):  
Jian Shi ◽  
Mingbo Tong ◽  
Chuwei Zhou ◽  
Congjie Ye ◽  
Xindong Wang

The failure types and ultimate loads for eight carbon-epoxy laminate specimens with a central circular hole subjected to tensile load were tested experimentally and simulated using two different progressive failure analysis (PFA) methodologies. The first model used a lamina level modeling based on the Hashin criterion and the Camanho stiffness degradation theory to predict the damage of the fiber and matrix. The second model implemented a micromechanical analysis technique coined the generalized method of cells (GMC), where the 3D Tsai–Hill failure criterion was used to govern matrix failure, and the fiber failure was dictated by the maximum stress criterion. The progressive failure methodology was implemented using the UMAT subroutine within the ABAQUS/implicit solver. Results of load versus displacement and failure types from the two different models were compared against experimental data for the open hole laminates subjected to tensile displacement load. The results obtained from the numerical simulation and experiments showed good agreement. Failure paths and accurate damage contours for the tested specimens were also predicted.


2021 ◽  
Vol 79 (1) ◽  
pp. 61-77
Author(s):  
A Jayababu ◽  
V Arumugam ◽  
B Rajesh ◽  
C Suresh Kumar

This work focuses on the experimental investigation of indentation damage resistance in different stacking sequences of glass/epoxy composite laminates under cyclic loading on normal (0°) and oblique (20°) planes. The stacking sequence, such as unidirectional [0]12, angle ply [±45]6S, and cross ply [0/90]6S, were subjected to cyclic indentation loading and monitoring by acoustic emission testing (AE). The laminates were loaded at the center using a hemispherical steel indenter with a 12.7 mm diameter. The cyclic indentation loading was performed at displacements from 0.5 to 3 mm with an increment of 0.5 mm in each cycle. Subsequently, the residual compressive strength of the post-indented laminates was estimated by testing them under in-plane loading, once again with AE monitoring. Mechanical responses such as peak load, absorbed energy, stiffness, residual dent, and damage area were used for the quantification of the indentation-induced damage. The normalized AE cumulative counts, AE energy, and Felicity ratio were used for monitoring the damage initiation and propagation. Moreover, the discrete wavelet analysis of acoustic emission signals and fast Fourier transform enabled the calculation of the peak frequency content of each damage mechanism. The results showed that the cross-ply laminates had superior indentation damage resistance over angle ply and unidirectional (UD) laminates under normal and oblique planes of cyclic loading. However, the conclusion from the results was that UD laminates showed a better reduction in residual compressive strength than the other laminate configurations.


2016 ◽  
Vol 23 (6) ◽  
pp. 1209-1218 ◽  
Author(s):  
Zhangxin Guo ◽  
Hao Zhu ◽  
Yongcun Li ◽  
Xiaoping Han ◽  
Zhihua Wang

Author(s):  
Liang Li ◽  
Purong Jia ◽  
Wenge Pan

Experimental and numerical investigations were carried out to study the temperature effect on the stiffness, strength, and failure behaviors of carbon/polyimide composite laminates. Both unnotched laminates and open-hole laminates were tested under tension load at three temperatures (room temperature, 200 ℃, and 250 ℃). A three-dimensional finite element analysis was carried out to study the thermomechanical coupling behavior in the notched laminate. The model considers each layer and interface as a single element in the thickness direction so that in-plane stress and interlaminar stress could be analyzed in the model. The stresses around the open-hole changing characteristics with the temperature and tensile loading have been discussed in detail. Failure analysis was carried out to predict the residual strength of the notched laminates at different temperatures. Compared to the experimental data, the numerical results have an excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document