Material orthotropy effects on progressive damage analysis of open-hole composite laminates under tension

2017 ◽  
Vol 36 (20) ◽  
pp. 1473-1486 ◽  
Author(s):  
Song Zhou ◽  
Yi Sun ◽  
Boyang Chen ◽  
Tong-Earn Tay

The sizes effects on the strengths of open-hole fibre-reinforced composite laminates subjected to tensile loading (OHT) have been investigated widely. However, little attention has been paid to the influence of material orthotropy. This paper presents a progressive damage model for the model failure of notched laminates under tensile loading based on continuum damage mechanics and cohesive elements. The effects of orthotropy on the failure of notched laminates with seven different ply sequences are investigated by our proposed model. The prediction results adopting the Hoffman and Pinho failure criterions to determine matrix damage initiation are compared with the results of experiments. Our proposed models are able to predict the strong influence of orthotropy on strengths of open-hole laminate under tension, and model using Pinho criterion can predict the open-hole tension strength most accurately.


2016 ◽  
Vol 51 (9) ◽  
pp. 1239-1251 ◽  
Author(s):  
Song Zhou ◽  
Yi Sun ◽  
Boyang Chen ◽  
Tong-Earn Tay

The strength prediction of open-hole fibre-reinforced composite laminate under compression is very important in the design of composite structures. The modelling of fibre, matrix damage and delamination plays an important role in the understanding of the damage mechanics of laminate under open-hole compression. In this article, a progressive damage model for open-hole compression that is based on continuum shell elements and cohesive elements is established to model in-plane damage and delamination, respectively. The damage mechanics of sublaminate-scaled laminates with ply sequence [45/0/−45/90]ms and ply-level-scaled laminates with ply sequence [45n/0n/−45n/90n]s are investigated by our proposed model. The Tsai-Wu and Hoffman failure criteria are employed for the determination of matrix damage initiation. Compared with the experiments, the numerical results using the Tsai-Wu criterion exhibit better accuracy regarding open-hole compression strength prediction and failure modes simulation.



2015 ◽  
Vol 8 (1) ◽  
pp. 49-65
Author(s):  
J. J. C. Pituba ◽  
W. M. Pereira Júnior

This work deals with an improvement of an anisotropic damage model in order to analyze reinforced concrete structures submitted to reversal loading. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous media following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. However, the original model is not capable to simulate the influence of the previous damage processes in compression regimes. In order to avoid this problem, some conditions are introduced to simulate the damage unilateral effect. It has noted that the damage model is agreement with to micromechanical theory conditions when dealing to unilateral effect in concrete material. Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. These numerical applications show the good performance of the model and its potentialities to simulate practical problems in structural engineering.



2021 ◽  
Author(s):  
RYOMA AOKI ◽  
RYO HIGUCHI ◽  
TOMOHIRO YOKOZEKI

This study aims to conduct a fatigue simulation for predicting the stiffness degradation of thin-ply composite laminates with several ply thicknesses. For the simulation, a fatigue evolution model of intra-laminar damage in thin-ply composite laminates considering the effect of ply thickness was proposed. The intra-laminar damage evolution was modeled using the continuum damage mechanics model and the static and fatigue evolution law were formulated by relating the transverse crack density to the damage variable. The finite element simulation using the proposed model was conducted to predict the stiffness degradation of the laminates as a function of the number of loading cycles. The simulation results show that the experimental data can be reproduced by using the proposed fatigue model.



Author(s):  
Sayed A. Nassar ◽  
Jianghui Mao ◽  
Xianjie Yang ◽  
Douglas Templeton

A proposed damage model is used for investigating the deformation and interfacial failure behavior of an adhesively bonded single-lap thick joint made of S2 glass/SC-15 epoxy resin composite material. The bonding material is 3M Scotch-Weld Epoxy Adhesive DP405 Black. Continuum damage mechanics models are used to describe the damage initiation and final failure at or near the interface. The effect of adhesive overlap length, thickness, and plasticity on the interfacial shear and normal stresses is studied. Experimental and analytical data are used to validate the proposed damage models.



2019 ◽  
Vol 54 (2) ◽  
pp. 153-166
Author(s):  
Wenxuan Qi ◽  
Weixing Yao ◽  
Haojie Shen

A multidirectional damage model based on continuum damage mechanics for fiber-reinforced composite laminates is proposed in this paper. The influence of three main damage mechanisms, including transverse matrix cracking, local delamination, and fiber breakage, on the multidirectional stiffness properties of composite laminates is analyzed by introducing macro phenomenological damage variables. Then the mechanical behavior of elementary ply in laminates is modeled based on these damage variables. Besides, relations between micro-level damage variables and macro-level damage variables are established. Damage evolution laws of the three damage mechanisms are proposed to predict the degradation of multidirectional stiffness and failure strength of composite laminates under quasi-static loading. The experiment of cross-ply glass fiber-reinforced plastic laminates is carried out, and the prediction results show good agreement with the experimental results.



2001 ◽  
Vol 28 (4) ◽  
pp. 593-607 ◽  
Author(s):  
Wahid Nechnech ◽  
Jean-Marie Reynouard ◽  
Fekri Meftah

In this paper a new thermoplastic damage model for plain concrete subjected to combined thermal and cyclic loading is developed using the concept of plastic-work hardening and stiffness degradation in continuum damage mechanics. Two damage variables are used: one for mechanical action and the other one for thermal action. Further, thermomechanical interaction strains have been introduced to describe the influence of mechanical loading on the physical process of thermal expansion of concrete. The constitutive relations for elastoplastic responses are decoupled from the degradation damage responses by using the effective stress concept. This method provides advantages in the numerical implementation. Efficient computational algorithms for the proposed model are subsequently explored and performance of this model is demonstrated with numerical examples.Key words: damage theory, plasticity, thermal, unilateral phenomenon, thermomechanical interaction.



Author(s):  
John Montesano ◽  
Chandra Veer Singh

A major benefit of advanced fiber-reinforced polymer composites is that they can be tailored and optimized to suit a particular structural application by orienting the reinforcing fibers along multiple directions. For practical load-bearing structural components manufactured from multidirectional laminates, predicting their mechanical behaviour is quite complex. This is specifically the case for progressive failure analysis of these materials when subjected to quasi-static or fatigue loading since local cracks will initiate and evolve in multiple directions simultaneously. The difficulty of the problem increases further when these laminates are subjected to complex multiaxial stress states. This is due to the fact that the multidirectional crack state will be subjected to additional crack driving stress components, which will ultimately alter the crack evolution characteristics. A synergistic damage mechanics (SDM) methodology has recently been developed to address these issues in progressive damage analyses of composite laminates containing multiple damage modes and subjected to uniaxial loading [1]. By combining micromechanics and continuum damage mechanics, the SDM methodology provides a rigorous and practical tool for accurate prediction of progressive damage behaviour in composite structures. This is essential for accurately predicting the integrity and durability of practical structures, which will lead to safer and more efficient designs.



2018 ◽  
Vol 774 ◽  
pp. 155-160 ◽  
Author(s):  
Juan S.B. León ◽  
Octavio Andrés González-Estrada ◽  
Alberto Pertuz

In this work, we present a model for the initiation and evolution of damage for a composite fibre-reinforced pipe used in the Oil & Gas industry, based on a commercially available pipe. A continuum damage mechanics model was employed to determine the initiation and evolution of damage. This model was implemented using finite element analysis to investigate the performance of the commercial composite pipe. Initially, the material properties were obtained from experimental data and fitting with static structural simulations. Then, FE simulations with damage were performed, considering three different boundary conditions: open, closed (pressure-vessel type) and fixed ends, the load considered was internal pressure. Results showed differences not only in the stress distribution but on the damage initiation and evolution along the geometry of the pipe. These differences in the damage initiation and propagation can be explained as the result of different axial-hoop stress ratio.



2013 ◽  
Vol 698 ◽  
pp. 1-10
Author(s):  
S. Benbelaid ◽  
B. Bezzazi ◽  
A. Bezazi

This paper considers damage development mechanisms in composite laminates subjected to tensile loading. The continuum damage mechanics is the most widely used approach to capture the non linear behaviour of laminates due to cracking. In this study, a continuum damage model based on ply failure criteria, which is initially proposed by Ladevèze has been extended to cover all plies failures mechanisms using an accurate numerical model to predict the equivalent damage accumulation. However, this model requires a reliable representation of the elementary damage mechanisms which can be produced in the composite laminate. To validate this model, a numerical application has been carried on the cross-ply laminates of type [0n/90m]s..A shear lag model was adapted to calculate the average stress of the 0° and 90° plies. The solution presented is obtained by using finite element analysis which implements progressive failure analysis. The effect of the stacking sequences has been done by varying the thickness of the 90° plies.



Sign in / Sign up

Export Citation Format

Share Document