Effects of nanoparticles size and interactions on dielectric properties of polymer matrix flexible dielectric nanocomposites

2019 ◽  
Vol 29 (3) ◽  
pp. 235-246
Author(s):  
Youngho Jin ◽  
Yunki Gwak ◽  
Rosario A. Gerhardt
Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1719
Author(s):  
Patryk Fryń ◽  
Sebastian Lalik ◽  
Natalia Górska ◽  
Agnieszka Iwan ◽  
Monika Marzec

The main goal of this paper was to study the dielectric properties of hybrid binary and ternary composites based on biodegradable polymer Ecoflex®, single walled carbon nanotubes (SWCN), and liquid crystalline 4′-pentyl-4-biphenylcarbonitrile (5CB) compound. The obtained results were compared with other created analogically to Ecoflex®, hybrid layers based on biodegradable polymers such as L,D-polylactide (L,D-PLA) and polycaprolactone (PCL). Frequency domain dielectric spectroscopy (FDDS) results were analyzed taking into consideration the amount of SWCN, frequency, and temperature. For pure Ecoflex®, two relaxation processes (α and β) were identified. It was shown that the SWCN admixture (in the weight ratio 10:0.01) did not change the properties of the Ecoflex® layer, while in the case of PCL and L,D-PLA, the layers became conductive. The dielectric constant increased with an increase in the content of SWCN in the Ecoflex® matrix and the conductive behavior was not visible, even for the greatest concentration (10:0.06 weight ratio). In the case of the Ecoflex® polymer matrix, the conduction relaxation process at a frequency ca. several kilohertz appeared and became stronger with an increase in the SWCN admixture in the matrix. Addition of oleic acid to the polymer matrix had a smaller effect on the increase in the dielectric response than the addition of liquid crystal 5CB. Fourier transform infrared (FTIR) results revealed that the molecular structure and chemical character of the Ecoflex® and PCL matrixes remained unchanged upon the addition of SWCN or 5CB in a weight ratio of 10:0.01 and 10:1, respectively, while molecular interactions appeared between L,D-PLA and 5CB. Moreover, adding oleic acid to pure Ecoflex® as well as the binary and ternary hybrid layers with SWCN and/or 5CB in a weight ratio of Ecoflex®:oleic acid equal to 10:0.3 did not have an influence on the chemical bonding of these materials.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Darya Meisak ◽  
Jan Macutkevic ◽  
Dzmitry Bychanok ◽  
Algirdas Selskis ◽  
Juras Banys ◽  
...  

A series of polymer composites based on epoxy resin with a 5–40 vol.% concentration of goethite (Fe2O3·H2O) nanorods was produced. The electrical percolation threshold in these composites was determined as 30 vol.% of nanorods. The dielectric properties of the composites both below and above the percolation threshold were studied in a wide temperature (200 K–450 K) and frequency (from Hz to THz) ranges. The dielectric properties of composites below the percolation threshold are mainly determined by the relaxation in a pure polymer matrix. The electrical properties of composites above the percolation threshold are determined by the percolation network, which is formed by the goethite nanorods inside the polymer matrix. Due to the finite conductivity of the epoxy resin, the electrical conductivity at high temperatures occurs in the composites both above and below the percolation threshold.


2007 ◽  
Vol 102 (6) ◽  
pp. 064305 ◽  
Author(s):  
S. P. Mondal ◽  
H. Mullick ◽  
T. Lavanya ◽  
A. Dhar ◽  
S. K. Ray ◽  
...  

2009 ◽  
Vol 45 (2) ◽  
pp. 167-170 ◽  
Author(s):  
M. B. Muradov ◽  
A. Sh. Abdinov ◽  
R. H. Hajimamedov ◽  
G. M. Eyivazova

This chapter sheds light on the recent nanotechnology theoretical models for interphase power law IPL model, inhomogeneous interphase, and multi-nanoparticles technique. Moreover, this chapter reviews deliberate hypothetical researches of the effective dielectric constant for polymer/filler nanocomposites and its reliance on “filler concentration, the interphase interactions, polymer filler dielectric constant, and interphase dielectric constant.” This chapter also investigates the prediction of the dielectric constant of new nanocomposite materials dependent upon exponential power law model. Thus, this work moves from the dielectric properties of beginning polymer matrix forward and predicts the dielectric properties of new nanocomposite materials to be utilized for high voltage and directing materials by adding specified nanoparticles with polymer matrix.


2020 ◽  
Vol 8 (25) ◽  
pp. 8440-8450 ◽  
Author(s):  
Kun Qian ◽  
Rui Qiao ◽  
Sheng Chen ◽  
Hang Luo ◽  
Dou Zhang

The dielectric properties of PVDF blend films with P-type triphenylene discotic side-chain liquid crystalline polymers (TD-SCLCPs) are dependent on the orderliness of TD-SCLCPs and the compatibility between polymer matrix and TD-SCLCPs.


Sign in / Sign up

Export Citation Format

Share Document