Body weight and fat mass across the menopausal transition: hormonal modulators

Author(s):  
Pierluigi Moccia ◽  
Rocío Belda-Montesinos ◽  
Aitana Monllor-Tormos ◽  
Peter Chedraui ◽  
Antonio Cano
Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 66 ◽  
Author(s):  
Teja Klancic ◽  
Isabelle Laforest-Lapointe ◽  
Jolene Wong ◽  
Ashley Choo ◽  
Jodi E. Nettleton ◽  
...  

Pulsed antibiotic treatment (PAT) early in life increases risk of obesity. Prebiotics can reduce fat mass and improve metabolic health. We examined if co-administering prebiotic with PAT reduces obesity risk in rat pups weaned onto a high fat/sucrose diet. Pups were randomized to (1) control [CTR], (2) antibiotic [ABT] (azithromycin), (3) prebiotic [PRE] (10% oligofructose (OFS)), (4) antibiotic + prebiotic [ABT + PRE]. Pulses of antibiotics/prebiotics were administered at d19–21, d28–30 and d37–39. Male and female rats given antibiotics (ABT) had higher body weight than all other groups at 10 wk of age. The PAT phenotype was stronger in ABT males than females, where increased fat mass, hyperinsulinemia and insulin resistance were present and all reversible with prebiotics. Reduced hypothalamic and hepatic expression of insulin receptor substrates and ileal tight junction proteins was seen in males only, explaining their greater insulin resistance. In females, insulin resistance was improved with prebiotics and normalized to lean control. ABT reduced Lactobacillaceae and increased Bacteroidaceae in both sexes. Using a therapeutic dose of an antibiotic commonly used for acute infection in children, PAT increased body weight and impaired insulin production and insulin sensitivity. The effects were reversed with prebiotic co-administration in a sex-specific manner.


2017 ◽  
Vol 14 (5) ◽  
pp. 389-407 ◽  
Author(s):  
Leon Mabire ◽  
Ramakrishnan Mani ◽  
Lizhou Liu ◽  
Hilda Mulligan ◽  
David Baxter

Background:Brisk walking is the most popular activity for obesity management for adults. We aimed to identify whether participant age, sex and body mass index (BMI) influenced the effectiveness of brisk walking.Methods:A search of 9 databases was conducted for randomized controlled trials (RCTs). Two investigators selected RCTs reporting on change in body weight, BMI, waist circumference, fat mass, fat-free mass, and body fat percentage following a brisk walking intervention in obese adults.Results:Of the 5072 studies screened, 22 met the eligibility criteria. The pooled mean differences were: weight loss, –2.13 kg; BMI, –0.96 kg/m2; waist circumference, –2.83 cm; fat mass, –2.59 kg; fat-free mass, 0.29 kg; and body fat percentage, –1.38%. Meta-regression of baseline BMI showed no effect on changes.Conclusions:Brisk walking can create a clinically significant reduction in body weight, BMI, waist circumference, and fat mass for obese men and women aged under 50 years. Obese women aged over 50 years can achieve modest losses, but gains in fat-free mass reduce overall change in body weight. Further research is required for men aged over 50 years and on the influence of BMI for all ages and sexes.


Author(s):  
Tai-Yu Huang ◽  
Melissa A. Linden ◽  
Scott E. Fuller ◽  
Felicia R Goldsmith ◽  
Jacob Simon ◽  
...  

Ketogenic diets (KD) are reported to improve body weight, fat mass, and exercise performance in humans. Unfortunately, most rodent studies have used a low-protein KD, which does not recapitulate diets used by humans. Since skeletal muscle plays a critical role in responding to macronutrient perturbations induced by diet and exercise, the purpose of this study was to test if a normal-protein KD (NPKD) impacts shifts in skeletal muscle substrate oxidative capacity in response to exercise training (ExTr). A high fat, carbohydrate-deficient NPKD (16.1% protein, 83.9% fat, 0% carbohydrate) was given to C57BL/6J male mice for 6 weeks, while controls received a low fat diet with similar protein (15.9% protein, 11.9% fat, 72.2% carbohydrate). On week four of the diet, mice began treadmill training 5 days/week, 60 min/day for 3 weeks. NPKD-fed mice increased body weight and fat mass, while ExTr negated a continued rise in adiposity. ExTr increased intramuscular glycogen, while the NPKD increased intramuscular triglycerides. Neither the NPKD nor ExTr alone altered mitochondrial content; however, in combination, the NPKD-ExTr group showed increases in PGC-1α, as well as markers of mitochondrial fission and fusion. Pyruvate oxidative capacity was unchanged by either intervention, while ExTr increased leucine oxidation in NPKD-fed mice. Lipid metabolism pathways had the most notable changes as the NPKD and ExTr interventions both enhanced mitochondrial and peroxisomal lipid oxidation and many adaptations were additive or synergistic. Overall these results suggest a combination of a NPKD and ExTr induces additive and/or synergistic adaptations in skeletal muscle oxidative capacity.


2014 ◽  
Vol 46 ◽  
pp. 854
Author(s):  
Robin P. Shook ◽  
Gregory A. Hand ◽  
Xuewen Wang ◽  
Robert Moran ◽  
Steven N. Blair

1995 ◽  
Vol 79 (3) ◽  
pp. 818-823 ◽  
Author(s):  
A. S. Ryan ◽  
R. E. Pratley ◽  
D. Elahi ◽  
A. P. Goldberg

Percent body fat increases with age and is often accompanied by a loss in muscle mass, strength, and energy expenditure. The effects of 16 wk of resistive training (RT) alone or with weight loss (RTWL) on strength (isokinetic dynamometer), body composition (dual-energy X-ray absorptiometry), resting metabolic rate (RMR) (indirect calorimetry), and sympathetic nervous system activity (catecholamines) were examined in 15 postmenopausal women (50–69 yr). RT resulted in significant improvements in upper and lower body strength in both groups (P < 0.01). The nonobese women in the RT group (n = 8) did not change their body weight or fat mass with training. In the obese RTWL group (n = 7), body weight, fat mass, and percent body fat were significantly decreased (P < 0.001). Fat-free mass and RMR significantly increased with training in both groups combined (P < 0.05). There were no significant changes in resting arterialized plasma norepinephrine or epinephrine levels in either group with training. RT increases strength with and without weight loss. Furthermore, RT and RTWL increase fat-free mass and RMR and decrease percent fat in postmenopausal women. Thus, RT may be a valuable component of an integrated weight management program in postmenopausal women.


1994 ◽  
Vol 77 (2) ◽  
pp. 933-940 ◽  
Author(s):  
K. E. Friedl ◽  
R. J. Moore ◽  
L. E. Martinez-Lopez ◽  
J. A. Vogel ◽  
E. W. Askew ◽  
...  

We examined body composition changes in 55 normal young men during an 8-wk Army combat leadership training course involving strenuous exercise and low energy intake, with an estimated energy deficit of 5.0 +/- 2.0 MJ/day and a resultant 15.7 +/- 3.1% weight loss. Percent body fat (BF) measured by dual-energy X-ray absorptiometry (DEXA) averaged 14.3% (range 6–26%) and 5.8 +/- 1.8% (range 4–11%) at the beginning and end of the course, respectively. Men who achieved a minimum percent BF (4–6%) by 6 wk demonstrated only small additional total and subcutaneous fat losses in the final 2 wk and sacrificed increasingly larger proportions of fat-free mass. Percent BF estimated from skinfold thicknesses reflected relative changes in fat mass, although actual percent BF was overestimated. Instead of reaching a plateau after fat stores were substantially depleted, abdominal, hip, and thigh girths continued to decline with body weight loss. Final percent BF for the leanest men was similar to that observed after a 25% body weight reduction in the 1950 Minnesota study (5.2% by underwater weighting), and height-corrected final fat mass was the same (1.0 +/- 0.2 vs. 0.9 +/- 0.7 kg fat/m2), suggesting that these values represent a minimal body fat content in healthy men and that weight loss subsequent to achieving this level is contributed from the fat-free mass. Our results suggest that 4–6% BF or approximately 2.5 kg fat represents the lower limit for healthy men, as assessed by DEXA or by underwater weighing.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Maria Pini

Introduction: Sedentary lifestyle and excessive calorie intake are risk factors for CVD. We have demonstrated the cardioprotective effect of exercise in aged mice and the critical role of visceral adiposity and its profibrotic secretome in increasing cardiovascular risks in obesity and aging. The association between exercise, lowered plasma leptin and reduced inflammatory leukocytes has been recently shown in patients with atherosclerosis. It remains unclear whether elevated plasma leptin can preserve or alter cardiovascular function in obesity. Methods: We analyzed the effect of high fat diet (HFD) in C57BL/6J male mice on the heart in terms of function, structure, histology and key molecular markers. Two interventions were used: 1) active fat mass loss via exercise (daily swimming) during HFD; 2) passive fat mass loss via surgical removal of the visceral adipose tissue (VAT lipectomy) followed by HFD. Results: HFD increased body weight and adiposity, leading to higher plasma leptin, glucose and insulin levels, compared to control diet (CD) mice. HFD impaired left ventricle (LV) structure (hypertrophy, interstitial fibrosis) and cardiac function (echocardiography, in vivo hemodynamics). Atria of HFD mice had enhanced pro-inflammatory protein production. Exercise reduced circulating leptin levels in HFD mice by 50%, in line with fat mass loss. In contrast, lipectomy reduced visceral fat mass, but body weight, adiposity and plasma leptin did not change. Both exercise and VAT lipectomy improved cardiac contractility, reversed collagen deposition and oxidative stress in HFD mice. Both interventions downregulated LV pro-inflammatory markers. We proved the role of leptin in cardiac remodeling in vitro by incubating primary cardiac fibroblasts with hyperleptinemic plasma from HFD mice. Remarkably, plasma from HFD-EX (exercise) suppressed the fibro-proliferative and pro-inflammatory responses of cardiac fibroblasts. Conclusions: Leptin directly contribute to cardiac fibrosis in obesity via activation and proliferation of cardiac fibroblasts. Understanding how leptin signals to the heart might have implications in a wide range of CVD, potentially helping early stratification and personalized care.


Sign in / Sign up

Export Citation Format

Share Document