scholarly journals A novel thermally stable heteropolysaccharide-based bioflocculant from hydrocarbonoclastic strain Kocuria rosea BU22S and its application in dye removal

2017 ◽  
Vol 39 (7) ◽  
pp. 859-872 ◽  
Author(s):  
Habib Chouchane ◽  
Mouna Mahjoubi ◽  
Besma Ettoumi ◽  
Mohamed Neifar ◽  
Ameur Cherif
1998 ◽  
Vol 512 ◽  
Author(s):  
C. Hecht ◽  
R. Kummer ◽  
A. Winnacker

ABSTRACTIn the context of spectral-hole burning experiments in 4H- and 6H-SiC doped with vanadium the energy positions of the V4+/5+ level in both polytypes were determined in order to resolve discrepancies in literature. From these numbers the band offset of 6H/4H-SiC is calculated by using the Langer-Heinrich rule, and found to be of staggered type II. Furthermore the experiments show that thermally stable electronic traps exist in both polytypes at room temperature and considerably above, which may result in longtime transient shifts of electronic properties.


2018 ◽  
Author(s):  
Jyoti N. Thakre Sanjay R. Thakre P.T.Kosankar Kavita Gour Jyoti N. Thakre Sanjay R. Thakre P.T.Kosankar Kavita Gour ◽  

1990 ◽  
Author(s):  
Elmer Klavetter ◽  
Tim O'Hern ◽  
Bill Marshall ◽  
Merrill Jr. ◽  
Frye Ray ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Reda M. El-Shishtawy ◽  
Abdullah M. Asiri ◽  
Nahed S. E. Ahmed

Background: Color effluents generated from the production industry of dyes and pigments and their use in different applications such as textile, paper, leather tanning, and food industries, are high in color and contaminants that damage the aquatic life. It is estimated that about 105 of various commercial dyes and pigments amounted to 7×105 tons are produced annually worldwide. Ultimately, about 10–15% is wasted into the effluents of the textile industry. Chitin is abundant in nature, and it is a linear biopolymer containing acetamido and hydroxyl groups amenable to render it atmospheric by introducing amino and carboxyl groups, hence able to remove different classes of toxic organic dyes from colored effluents. Methods: Chitin was chemically modified to render it amphoteric via the introduction of carboxyl and amino groups. The amphoteric chitin has been fully characterized by FTIR, TGA-DTG, elemental analysis, SEM, and point of zero charge. Adsorption optimization for both anionic and cationic dyes was made by batch adsorption method, and the conditions obtained were used for studying the kinetics and thermodynamics of adsorption. Results: The results of dye removal proved that the adsorbent was proven effective in removing both anionic and cationic dyes (Acid Red 1 and methylene blue (MB)), at their respective optimum pHs (2 for acid and 8 for cationic dye). The equilibrium isotherm at room temperature fitted the Freundlich model for MB, and the maximum adsorption capacity was 98.2 mg/g using 50 mg/l of MB, whereas the equilibrium isotherm fitted the Freundlich and Langmuir model for AR1 and the maximum adsorption capacity was 128.2 mg/g. Kinetic results indicate that the adsorption is a two-step diffusion process for both dyes as indicated by the values of the initial adsorption factor (Ri) and follows the pseudo-second-order kinetics. Also, thermodynamic calculations suggest that the adsorption of AR1 on the amphoteric chitin is an endothermic process from 294 to 303 K. The result indicated that the mechanism of adsorption is chemisorption via an ion-exchange process. Also, recycling of the adsorbent was easy, and its reuse for dye removal was effective. Conclusion: New amphoteric chitin has been successfully synthesized and characterized. This resin material, which contains amino and carboxyl groups, is novel as such chemical modification of chitin hasn’t been reported. The amphoteric chitin has proven effective in decolorizing aqueous solution from anionic and cationic dyes. The adsorption behavior of amphoteric chitin is believed to follow chemical adsorption with an ion-exchange process. The recycling process for few cycles indicated that the loaded adsorbent could be regenerated by simple treatment and retested for removing anionic and cationic dyes without any loss in the adsorbability. Therefore, the study introduces a new and easy approach for the development of amphoteric adsorbent for application in the removal of different dyes from aqueous solutions.


1984 ◽  
Vol 49 (6) ◽  
pp. 1448-1458
Author(s):  
Josef Kopešťanský

The effect of temperature and structure of the palladium surfaces on acetylene chemisorption was studied along with the interaction of the adsorbed layers with molecular and atomic hydrogen. The work function changes were measured and combined with the volumetric measurements and analysis of the products. At temperature below 100 °C, acetylene is adsorbed almost without dissociation and forms at least two different types of thermally stable adsorption complexes. Acetylene adsorbed at 200 °C is partly decomposed, especially in the low coverage region. Besides the above mentioned effects, the template effect of adsorbed acetylene was studied in the temperature range from -80° to 25 °C. It has been shown that this effect is a typical phenomenon of the palladium-acetylene system which is not due to surface impurities.


2019 ◽  
Vol 38 (24) ◽  
pp. 4615-4624 ◽  
Author(s):  
Alexander N. Selikhov ◽  
Andrey S. Shavyrin ◽  
Anton V. Cherkasov ◽  
Georgy K. Fukin ◽  
Alexander A. Trifonov

2021 ◽  
Vol 253 ◽  
pp. 117230 ◽  
Author(s):  
Sirinan Lawchoochaisakul ◽  
Pathavuth Monvisade ◽  
Punnama Siriphannon

Sign in / Sign up

Export Citation Format

Share Document