Enhanced selective copper precipitation by mechanochemically activated benzene tricarboxylic acid

2021 ◽  
pp. 1-24
Author(s):  
Qing Shi ◽  
Shanshan Yan ◽  
Chao Wang ◽  
Chaocheng Zeng ◽  
Huimin Hu ◽  
...  
Author(s):  
L.E. Murr ◽  
V. Annamalai

Georgius Agricola in 1556 in his classical book, “De Re Metallica”, mentioned a strange water drawn from a mine shaft near Schmölnitz in Hungary that eroded iron and turned it into copper. This precipitation (or cementation) of copper on iron was employed as a commercial technique for producing copper at the Rio Tinto Mines in Spain in the 16th Century, and it continues today to account for as much as 15 percent of the copper produced by several U.S. copper companies.In addition to the Cu/Fe system, many other similar heterogeneous, electrochemical reactions can occur where ions from solution are reduced to metal on a more electropositive metal surface. In the case of copper precipitation from solution, aluminum is also an interesting system because of economic, environmental (ecological) and energy considerations. In studies of copper cementation on aluminum as an alternative to the historical Cu/Fe system, it was noticed that the two systems (Cu/Fe and Cu/Al) were kinetically very different, and that this difference was due in large part to differences in the structure of the residual, cement-copper deposit.


Alloy Digest ◽  
2016 ◽  
Vol 65 (1) ◽  

Abstract SPARTAN II (HSLA-100) is one of the family of Spartan high strength (>690 MPa, or >100 ksi, minimum yield strength), high toughness, improved weldability steels, which are alternatives to traditional quenched and tempered alloy steels. The Spartan family of steels are low carbon, copper precipitation hardened steels. Spartan II has improved yield strength compared to Spartan I. This datasheet provides information on composition, physical properties, microstructure, tensile properties. It also includes information on forming and joining. Filing Code: SA-738. Producer or source: ArcelorMittal USA.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2141-2143 ◽  
Author(s):  
Y. Wang ◽  
P. R. Anderson

Two types of seed with different surface area are used in a precipitation system to evaluate the effectiveness of seed surface characteristics on sludge dewatering properties. We expect that the surface area of the seed will stongly affect the sludge properties. The preliminary study shows that the seeded system has a lower precipitation pH and lower supersaturation level.


2020 ◽  
Vol 49 (42) ◽  
pp. 14985-14994
Author(s):  
Xu-Sheng Gao ◽  
Mei-Juan Ding ◽  
Jin Zhang ◽  
Li-Duo Zhao ◽  
Xiao-Ming Ren

All solid solutions (EuxY1−x-PTC, x = 0.013–0.82) are isomorphic to Eu-PTC, but different from Y-PTC, and show phase selectivity as well as excitation wavelength dependent emission.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yiyong Wei ◽  
Donghang Zhang ◽  
Jin Liu ◽  
Mengchan Ou ◽  
Peng Liang ◽  
...  

Abstract Background Metabolic status can be impacted by general anesthesia and surgery. However, the exact effects of general anesthesia and surgery on systemic metabolome remain unclear, which might contribute to postoperative outcomes. Methods Five hundred patients who underwent abdominal surgery were included. General anesthesia was mainly maintained with sevoflurane. The end-tidal sevoflurane concentration (ETsevo) was adjusted to maintain BIS (Bispectral index) value between 40 and 60. The mean ETsevo from 20 min after endotracheal intubation to 2 h after the beginning of surgery was calculated for each patient. The patients were further divided into low ETsevo group (mean − SD) and high ETsevo group (mean + SD) to investigate the possible metabolic changes relevant to the amount of sevoflurane exposure. Results The mean ETsevo of the 500 patients was 1.60% ± 0.34%. Patients with low ETsevo (n = 55) and high ETsevo (n = 59) were selected for metabolomic analysis (1.06% ± 0.13% vs. 2.17% ± 0.16%, P < 0.001). Sevoflurane and abdominal surgery disturbed the tricarboxylic acid cycle as identified by increased citrate and cis-aconitate levels and impacted glycometabolism as identified by increased sucrose and D-glucose levels in these 114 patients. Glutamate metabolism was also impacted by sevoflurane and abdominal surgery in all the patients. In the patients with high ETsevo, levels of L-glutamine, pyroglutamic acid, sphinganine and L-selenocysteine after sevoflurane anesthesia and abdominal surgery were significantly higher than those of the patients with low ETsevo, suggesting that these metabolic changes might be relevant to the amount of sevoflurane exposure. Conclusions Sevoflurane anesthesia and abdominal surgery can impact principal metabolic pathways in clinical patients including tricarboxylic acid cycle, glycometabolism and glutamate metabolism. This study may provide a resource data for future studies about metabolism relevant to general anaesthesia and surgeries. Trial registration www.chictr.org.cn. identifier: ChiCTR1800014327.


Sign in / Sign up

Export Citation Format

Share Document