Treatment of Agricultural Wastewater in a Pilot-Scale Tidal Flow Reed Bed System

1999 ◽  
Vol 20 (2) ◽  
pp. 233-237 ◽  
Author(s):  
G. Sun ◽  
K. R. Gray ◽  
A. J. Biddlestone
2004 ◽  
Vol 50 (8) ◽  
pp. 65-72 ◽  
Author(s):  
Y.Q. Zhao ◽  
G. Sun ◽  
C. Lafferty ◽  
S.J. Allen

A gravel-based tidal flow reed bed system was operated with three different strategies in order to investigate its optimal performance for the treatment of a high strength agricultural wastewater. According to the three strategies, individual reed beds were saturated and unsaturated with the wastewater for different periods while reasonably stable hydraulic and organic loadings were maintained. Experimental results demonstrated that the system produced the highest pollutant removal efficiencies with a relatively short saturated period and long unsaturated period, highlighting the importance of oxygen transfer into reed bed matrices during the treatment. Significant removals of some major organic and inorganic pollutants were achieved under all three operational conditions. Nitrification was not the major route of ammoniacal-nitrogen removal when the system was under high organic loading. Due to the filtration of suspended solids and the accumulation of biomass, gradual clogging of the reed bed matrices took place, which caused concerns over the long-term efficiency of the tidal flow system.


1999 ◽  
Vol 40 (3) ◽  
pp. 139-146 ◽  
Author(s):  
G. Sun ◽  
K. R. Gray ◽  
A. J. Biddlestone ◽  
D. J. Cooper

In this study, the efficacy of a full-scale combined tidal flow-downflow reed bed system was tested for the treatment of agricultural wastewater with average BOD5 of 1100 mg/l and NH4-N of 329.5 mg/l. At a mean flow rate of 2.0 m3/d, the BOD5 and COD of the influent were reduced across the system by 97.6% and 71.3%, respectively. Considerable SS and PO4-P removals were also achieved. NH4-N was reduced by 93.1%. Nitrification proved to be the major process for NH4-N reduction. Although a further polishing treatment is needed, the average BOD5 and NH4-N levels of the treated wastewater were close to those frequently required in UK discharge consents. The highest BOD5, COD and NH4-N removals and oxygen consumption rate were achieved in the tidal flow stage of the combined system; this suggests that the rhythmical air/water movement in the matrix of the tidal flow beds can benefit the treatment by providing higher oxygen flux and more efficient utilisation of the available bed volume. Better results for BOD5, COD and NH4-N removals were obtained in downflow beds with water recirculation than in those without this recycle. Therefore the recirculation of effluent around each treatment stage is a suitable technique for improving the performance of downflow reed beds.


2000 ◽  
Vol 41 (1) ◽  
pp. 57-63 ◽  
Author(s):  
S. Vandaele ◽  
C. Thoeye ◽  
B. Van Eygen ◽  
G. De Gueldre

In Flanders (Belgium) an estimated 15% of the population will never be connected to a central wastewater treatment plant (WWTP). Small WWTPs can be a valuable option. Aquafin bases the decision to build SWWTPs on a drainage area study. To realise an accelerated construction the process choice is made accordingly to a standard matrix, which represents the different technologies in function of the size and the effluent consents. A pilot scale constructed two-stage reed bed is used to optimise the concept of the reed beds. The concept consists of a primary clarifier, two parallel vertical flow reed beds followed by a sub-surface flow reed bed. The removal efficiency of organic pollutants is high (COD: 89%, BOD: 98%). Phosphorus removal is high at the start-up but diminishes throughout the testing period (from 100% to 71% retention after 7 months). Nitrogen removal amounts to 53% on average. Nitrification is complete in summer. Denitrification appears to be the limiting factor. In autumn leakage of nitrogen is assumed. Removal efficiency of pathogens amounts to almost 99%. Clogging forms a substantial constraint of the vertical flow reed bed. Problems appear to be related with presettlement, feed interval and geotextile.


2003 ◽  
Vol 39 (3) ◽  
pp. 351-357 ◽  
Author(s):  
G. Sun ◽  
K.R. Gray ◽  
A.J. Biddlestone ◽  
S.J. Allen ◽  
D.J. Cooper

2015 ◽  
Vol 768 ◽  
pp. 515-519
Author(s):  
Xin Nan Deng ◽  
Yu Bo Cui ◽  
Wei Gao ◽  
Rui Chen

Sludge moisture content was investigated at different stages during the test. Pilot-scale sludge drying bed and sludge drying reed beds had the same size of 3 m×1 m×1.3 m, and the bed height consisted of a 65 cm media layer and a 65 cm extra height. The media layer is filled with slag (20 cm), gravel (20 cm), coarse sand (5 cm) and quartz sand (24.5 cm) from the bottom in turn. Unit 1 was a conventional sludge drying bed, unit 2 was a sludge drying reed bed. Unit 1 and unit 2 had ventilation pipes which were mounted on the drainage pipes. Unit 3 was a sludge drying reed bed without ventilation pipe. The waste activated sludge was feed into the three units periodically during the experiment. The experiment investigated the sludge moisture content. At the end of the operation, the sludge moisture content in three units decreased by 18.52%, 22.37%, and 20.68%, respectively. It was found that the dewatering effect of the sludge drying reed bed was better than the conventional drying bed. The effect of plant growth on sludge dewatering is greater than the ventilation, but the difference was not significant.


Sign in / Sign up

Export Citation Format

Share Document