scholarly journals Optimising the performance of a lab-scale tidal flow reed bed system treating agricultural wastewater

2004 ◽  
Vol 50 (8) ◽  
pp. 65-72 ◽  
Author(s):  
Y.Q. Zhao ◽  
G. Sun ◽  
C. Lafferty ◽  
S.J. Allen

A gravel-based tidal flow reed bed system was operated with three different strategies in order to investigate its optimal performance for the treatment of a high strength agricultural wastewater. According to the three strategies, individual reed beds were saturated and unsaturated with the wastewater for different periods while reasonably stable hydraulic and organic loadings were maintained. Experimental results demonstrated that the system produced the highest pollutant removal efficiencies with a relatively short saturated period and long unsaturated period, highlighting the importance of oxygen transfer into reed bed matrices during the treatment. Significant removals of some major organic and inorganic pollutants were achieved under all three operational conditions. Nitrification was not the major route of ammoniacal-nitrogen removal when the system was under high organic loading. Due to the filtration of suspended solids and the accumulation of biomass, gradual clogging of the reed bed matrices took place, which caused concerns over the long-term efficiency of the tidal flow system.

2021 ◽  
Vol 42 ◽  
pp. e56
Author(s):  
Marcelo Lippi ◽  
Michelle Bellas Romariz Gaudie Ley ◽  
Gabriel De Pinna Mendez ◽  
Ricardo Abraches Felix Cardoso Junior

The different methodologies of leachate treatment are widely debated in the literature, promoting a great discussion among the scientific and academic community on the most efficient and propitious methods. Membrane treatment processes, especially Reverse Osmosis (RO), stand out as the best solution. The RO has pollutant removal rates higher than 99%, with operational cost and complexity competitive with other technologies. Its main disadvantage is the concentrated residue generated in the process that covers about 30% of the volume of leachate entering the system. Its recirculation in the body of the landfill arises as an alternative of low destination cost. Its effectiveness is directly related to the method of recirculation along the geological, climatological, technical and operational conditions of the landfills. Although already widespread, the treatment or destination of the concentrate requires a greater technological assertion. Further research is needed on the recirculation methods of the concentrate and its medium and long-term effects on leachate, settlement and landfills after care period. It is important to make a comparative analysis of landfills with similar characteristics, one with and another without recirculation of the concentrate. Alternatives to treat the concentrate are also of great interest whether they are economically viable in real scale. 


1999 ◽  
Vol 40 (3) ◽  
pp. 139-146 ◽  
Author(s):  
G. Sun ◽  
K. R. Gray ◽  
A. J. Biddlestone ◽  
D. J. Cooper

In this study, the efficacy of a full-scale combined tidal flow-downflow reed bed system was tested for the treatment of agricultural wastewater with average BOD5 of 1100 mg/l and NH4-N of 329.5 mg/l. At a mean flow rate of 2.0 m3/d, the BOD5 and COD of the influent were reduced across the system by 97.6% and 71.3%, respectively. Considerable SS and PO4-P removals were also achieved. NH4-N was reduced by 93.1%. Nitrification proved to be the major process for NH4-N reduction. Although a further polishing treatment is needed, the average BOD5 and NH4-N levels of the treated wastewater were close to those frequently required in UK discharge consents. The highest BOD5, COD and NH4-N removals and oxygen consumption rate were achieved in the tidal flow stage of the combined system; this suggests that the rhythmical air/water movement in the matrix of the tidal flow beds can benefit the treatment by providing higher oxygen flux and more efficient utilisation of the available bed volume. Better results for BOD5, COD and NH4-N removals were obtained in downflow beds with water recirculation than in those without this recycle. Therefore the recirculation of effluent around each treatment stage is a suitable technique for improving the performance of downflow reed beds.


1999 ◽  
Vol 20 (2) ◽  
pp. 233-237 ◽  
Author(s):  
G. Sun ◽  
K. R. Gray ◽  
A. J. Biddlestone

2009 ◽  
Vol 58 (6) ◽  
pp. 525-532 ◽  
Author(s):  
Yoshitaka NARA ◽  
Masafumi TAKADA ◽  
Daisuke MORI ◽  
Hitoshi OWADA ◽  
Tetsuro YONEDA ◽  
...  

Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Kubota KNC-03 is a grade with a combination of high strength and excellent resistance to oxidation. These properties make this alloy suitable for long-term service at temperature up to 1250 deg C (2282 deg F). This datasheet provides information on physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting and joining. Filing Code: Ni-676. Producer or source: Kubota Metal Corporation, Fahramet Division. See also Alloy Digest Ni-662, April 2008.


Alloy Digest ◽  
2020 ◽  
Vol 69 (8) ◽  

Abstract ATI 6-2-4-2 is a near-alpha, high strength, titanium alloy that exhibits a good combination of tensile strength, creep strength, toughness, and long-term stability at temperatures up to 425 °C (800 °F). Silicon up to 0.1% frequently is added to improve the creep resistance of the alloy. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ti-169. Producer or Source: ATI.


2021 ◽  
Vol 7 (1) ◽  
pp. eabc5442
Author(s):  
Dianyu Dong ◽  
Caroline Tsao ◽  
Hsiang-Chieh Hung ◽  
Fanglian Yao ◽  
Chenjue Tang ◽  
...  

The high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a “swelling” and “locking” mechanism. These zwitterionic-elastomeric-networked (ZEN) hydrogels are further shown to efficaciously resist the fibrous capsule formation upon implantation in mice for up to 1 year. Such materials with both high mechanical properties and long-term fibrous capsule resistance have never been achieved before. This work not only demonstrates a class of durable and fibrous capsule–resistant materials but also provides design principles for zwitterionic elastomeric hydrogels.


Sign in / Sign up

Export Citation Format

Share Document