REED BED TREATMENT OF WASTEWATERS IN A PILOT-SCALE FACILITY

Author(s):  
T.H. Davies ◽  
B.T. Hart
Keyword(s):  
2000 ◽  
Vol 41 (1) ◽  
pp. 57-63 ◽  
Author(s):  
S. Vandaele ◽  
C. Thoeye ◽  
B. Van Eygen ◽  
G. De Gueldre

In Flanders (Belgium) an estimated 15% of the population will never be connected to a central wastewater treatment plant (WWTP). Small WWTPs can be a valuable option. Aquafin bases the decision to build SWWTPs on a drainage area study. To realise an accelerated construction the process choice is made accordingly to a standard matrix, which represents the different technologies in function of the size and the effluent consents. A pilot scale constructed two-stage reed bed is used to optimise the concept of the reed beds. The concept consists of a primary clarifier, two parallel vertical flow reed beds followed by a sub-surface flow reed bed. The removal efficiency of organic pollutants is high (COD: 89%, BOD: 98%). Phosphorus removal is high at the start-up but diminishes throughout the testing period (from 100% to 71% retention after 7 months). Nitrogen removal amounts to 53% on average. Nitrification is complete in summer. Denitrification appears to be the limiting factor. In autumn leakage of nitrogen is assumed. Removal efficiency of pathogens amounts to almost 99%. Clogging forms a substantial constraint of the vertical flow reed bed. Problems appear to be related with presettlement, feed interval and geotextile.


2015 ◽  
Vol 768 ◽  
pp. 515-519
Author(s):  
Xin Nan Deng ◽  
Yu Bo Cui ◽  
Wei Gao ◽  
Rui Chen

Sludge moisture content was investigated at different stages during the test. Pilot-scale sludge drying bed and sludge drying reed beds had the same size of 3 m×1 m×1.3 m, and the bed height consisted of a 65 cm media layer and a 65 cm extra height. The media layer is filled with slag (20 cm), gravel (20 cm), coarse sand (5 cm) and quartz sand (24.5 cm) from the bottom in turn. Unit 1 was a conventional sludge drying bed, unit 2 was a sludge drying reed bed. Unit 1 and unit 2 had ventilation pipes which were mounted on the drainage pipes. Unit 3 was a sludge drying reed bed without ventilation pipe. The waste activated sludge was feed into the three units periodically during the experiment. The experiment investigated the sludge moisture content. At the end of the operation, the sludge moisture content in three units decreased by 18.52%, 22.37%, and 20.68%, respectively. It was found that the dewatering effect of the sludge drying reed bed was better than the conventional drying bed. The effect of plant growth on sludge dewatering is greater than the ventilation, but the difference was not significant.


2006 ◽  
Vol 78 (7) ◽  
pp. 754-763 ◽  
Author(s):  
Cristiana Sacco ◽  
Anna Maria Pizzo ◽  
Emilia Tiscione ◽  
Daniela Burrini ◽  
Luca Messeri ◽  
...  

2019 ◽  
Vol 14 (5) ◽  
pp. 9154-9161 ◽  
Author(s):  
Omar H. Jehawi ◽  
Siti Rozaimah S. Abdullah ◽  
Hassimi A. Hassan ◽  
Nadya H. Al Sbani ◽  
Nur `Izzati Ismail ◽  
...  

2015 ◽  
Vol 71 (12) ◽  
pp. 1751-1759 ◽  
Author(s):  
Luisa Fernanda Calderón-Vallejo ◽  
Cynthia Franco Andrade ◽  
Elias Sete Manjate ◽  
Carlos Arturo Madera-Parra ◽  
Marcos von Sperling

This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m−2year−1). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.


2007 ◽  
Vol 55 (11) ◽  
pp. 135-142 ◽  
Author(s):  
M. Johnson ◽  
M.A. Camargo Valero ◽  
D.D. Mara

Wastewater treatment technologies suitable for serving large populations are generally reliable and reasonably cost-effective, yet they are almost always financially inappropriate for small communities (<2,000 p.e.). Comparative cost data suggests that waste stabilization ponds should be an attractive option for small communities, yet perceptions relating to land costs, climate and effluent quality have limited their application in the UK. This paper details typical UK land costs, climate and winter performance data for a pilot-scale waste stabilization pond with various upgrading technologies: system A, two tertiary maturation ponds in series; B, two tertiary maturation ponds in series followed by a reed bed channel; C, a control rock filter; D, an aerated rock filter; and E, a constructed wetland. System D was found to perform best, closely followed by system B.


1999 ◽  
Vol 20 (2) ◽  
pp. 233-237 ◽  
Author(s):  
G. Sun ◽  
K. R. Gray ◽  
A. J. Biddlestone

TAPPI Journal ◽  
2019 ◽  
Vol 18 (8) ◽  
Author(s):  
JANI LEHMONEN ◽  
TIMO RANTANEN ◽  
KARITA KINNUNEN-RAUDASKOSKI

The need for production cost savings and changes in the global paper and board industry during recent years have been constants. Changes in the global paper and board industry during past years have increased the need for more cost-efficient processes and production technologies. It is known that in paper and board production, foam typically leads to problems in the process rather than improvements in production efficiency. Foam forming technology, where foam is used as a carrier phase and a flowing medium, exploits the properties of dispersive foam. In this study, the possibility of applying foam forming technology to paper applications was investigated using a pilot scale paper forming environment modified for foam forming from conventional water forming. According to the results, the shape of jet-to-wire ratios was the same in both forming methods, but in the case of foam forming, the achieved scale of jet-to-wire ratio and MD/CD-ratio were wider and not behaving sensitively to shear changes in the forming section as a water forming process would. This kind of behavior would be beneficial when upscaling foam technology to the production scale. The dryness results after the forming section indicated the improvement in dewatering, especially when foam density was at the lowest level (i.e., air content was at the highest level). In addition, the dryness results after the pressing section indicated a faster increase in the dryness level as a function of foam density, with all density levels compared to the corresponding water formed sheets. According to the study, the bonding level of water- and foam-laid structures were at the same level when the highest wet pressing value was applied. The results of the study show that the strength loss often associated with foam forming can be compensated for successfully through wet pressing.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (3) ◽  
pp. 14-20 ◽  
Author(s):  
YUAN-SHING PERNG ◽  
EUGENE I-CHEN WANG ◽  
SHIH-TSUNG YU ◽  
AN-YI CHANG

Trends toward closure of white water recirculation loops in papermaking often lead to a need for system modifications. We conducted a pilot-scale study using pulsed electrocoagulation technology to treat the effluent of an old corrugated containerboard (OCC)-based paper mill in order to evaluate its treatment performance. The operating variables were a current density of 0–240 A/m2, a hydraulic retention time (HRT) of 8–16 min, and a coagulant (anionic polyacrylamide) dosage of 0–22 mg/L. Water quality indicators investigated were electrical con-ductivity, suspended solids (SS), chemical oxygen demand (COD), and true color. The results were encouraging. Under the operating conditions without coagulant addition, the highest removals for conductivity, SS, COD, and true color were 39.8%, 85.7%, 70.5%, and 97.1%, respectively (with an HRT of 16 min). The use of a coagulant enhanced the removal of both conductivity and COD. With an optimal dosage of 20 mg/L and a shortened HRT of 10 min, the highest removal achieved for the four water quality indicators were 37.7%, 88.7%, 74.2%, and 91.7%, respectively. The water qualities thus attained should be adequate to allow reuse of a substantial portion of the treated effluent as process water makeup in papermaking.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


Sign in / Sign up

Export Citation Format

Share Document