Short-term and long-term streamflow prediction by using 'wavelet–gene expression' programming approach

2015 ◽  
Vol 22 (2) ◽  
pp. 148-162 ◽  
Author(s):  
Sepideh Karimi ◽  
Jalal Shiri ◽  
Ozgur Kisi ◽  
Abbas Ali Shiri
2021 ◽  
Vol 21 (4) ◽  
pp. 1-28
Author(s):  
Song Deng ◽  
Fulin Chen ◽  
Xia Dong ◽  
Guangwei Gao ◽  
Xindong Wu

Load forecasting in short term is very important to economic dispatch and safety assessment of power system. Although existing load forecasting in short-term algorithms have reached required forecast accuracy, most of the forecasting models are black boxes and cannot be constructed to display mathematical models. At the same time, because of the abnormal load caused by the failure of the load data collection device, time synchronization, and malicious tampering, the accuracy of the existing load forecasting models is greatly reduced. To address these problems, this article proposes a Short-Term Load Forecasting algorithm by using Improved Gene Expression Programming and Abnormal Load Recognition (STLF-IGEP_ALR). First, the Recognition algorithm of Abnormal Load based on Probability Distribution and Cross Validation is proposed. By analyzing the probability distribution of rows and columns in load data, and using the probability distribution of rows and columns for cross-validation, misjudgment of normal load in abnormal load data can be better solved. Second, by designing strategies for adaptive generation of population parameters, individual evolution of populations and dynamic adjustment of genetic operation probability, an Improved Gene Expression Programming based on Evolutionary Parameter Optimization is proposed. Finally, the experimental results on two real load datasets and one open load dataset show that compared with the existing abnormal data detection algorithms, the algorithm proposed in this article have higher advantages in missing detection rate, false detection rate and precision rate, and STLF-IGEP_ALR is superior to other short-term load forecasting algorithms in terms of the convergence speed, MAE, MAPE, RSME, and R 2 .


2018 ◽  
Vol 175 ◽  
pp. 37-50 ◽  
Author(s):  
Saeed Samadianfard ◽  
Esmaeil Asadi ◽  
Salar Jarhan ◽  
Honeyeh Kazemi ◽  
Salar Kheshtgar ◽  
...  

Author(s):  
Н.Б. Панкова

В лекции рассмотрены общие представления об адаптации, основанные на классических работах Г. Селье, Ф.З. Меерсона, Н.А. Агаджаняна, а также особенности адаптивного ответа развивающегося организма. Рассмотрены механизмы срочной адаптации как мобилизации функциональных резервов организма. В качестве одного из механизмов долговременной адаптации представлена эпигенетическая регуляция, которая позволяет выбрать и реализовать программу экспрессии генов - в соответствии с этапом онтогенетического развития, или средовым окружением. В качестве ещё одного механизма долговременной адаптации рассмотрено воздействие на генетический материал. Приведены примеры формирования адаптивного ответа организма на физико-химические и климатогеографические стрессорные факторы. Отдельно проанализированы механизмы адаптивного ответа организма детей на факторы образовательной среды. The lecture addresses general ideas about adaptation based on classic studies by H. Selye, F.Z. Meerson, and N.A. Agadzhanyan and features of the adaptive response in a developing body. Mobilization of the functional reserve is considered as a mechanism of short-term adaptation. Epigenetic regulation is presented as one of mechanisms for long-term adaptation, which allows selecting and implementing a gene expression program consistent with the stage of ontogenetic development or the environment. Another mechanism of long-term adaptation is influence on the genome. The lecture provides examples of adaptation to physicochemical and climatic geographical stress factors. Mechanisms of the adaptive response to factors of the educational environment in children are analyzed separately.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng-Hsuan Ho ◽  
Hsiu-Hui Yang ◽  
Shih-Han Su ◽  
Ai-Hsin Yeh ◽  
Ming-Jiun Yu

Water permeability of the kidney collecting ducts is regulated by the peptide hormone vasopressin. Between minutes and hours (short-term), vasopressin induces trafficking of the water channel protein aquaporin-2 to the apical plasma membrane of the collecting duct principal cells to increase water permeability. Between hours and days (long-term), vasopressin induces aquaporin-2 gene expression. Here, we investigated the mechanisms that bridge the short-term and long-term vasopressin-mediated aquaporin-2 regulation by α-actinin 4, an F-actin crosslinking protein and a transcription co-activator of the glucocorticoid receptor. Vasopressin induced F-actin depolymerization and α-actinin 4 nuclear translocation in the mpkCCD collecting duct cell model. Co-immunoprecipitation followed by immunoblotting showed increased interaction between α-actinin 4 and glucocorticoid receptor in response to vasopressin. ChIP-PCR showed results consistent with α-actinin 4 and glucocorticoid receptor binding to the aquaporin-2 promoter. α-actinin 4 knockdown reduced vasopressin-induced increases in aquaporin-2 mRNA and protein expression. α-actinin 4 knockdown did not affect vasopressin-induced glucocorticoid receptor nuclear translocation, suggesting independent mechanisms of vasopressin-induced nuclear translocation of α-actinin 4 and glucocorticoid receptor. Glucocorticoid receptor knockdown profoundly reduced vasopressin-induced increases in aquaporin-2 mRNA and protein expression. In the absence of glucocorticoid analog dexamethasone, vasopressin-induced increases in glucocorticoid receptor nuclear translocation and aquaporin-2 mRNA were greatly reduced. α-actinin 4 knockdown further reduced vasopressin-induced increase in aquaporin-2 mRNA in the absence of dexamethasone. We conclude that glucocorticoid receptor plays a major role in vasopressin-induced aquaporin-2 gene expression that can be enhanced by α-actinin 4. In the absence of vasopressin, α-actinin 4 crosslinks F-actin underneath the apical plasma membrane, impeding aquaporin-2 membrane insertion. Vasopressin-induced F-actin depolymerization in one hand facilitates aquaporin-2 apical membrane insertion and in the other hand frees α-actinin 4 to enter the nucleus where it binds glucocorticoid receptor to enhance aquaporin-2 gene expression.


Sign in / Sign up

Export Citation Format

Share Document