scholarly journals Computer simulation of orthodontic tooth movement using CT image-based voxel finite element models with the level set method

2015 ◽  
Vol 19 (5) ◽  
pp. 474-483 ◽  
Author(s):  
Masakazu Hasegawa ◽  
Taiji Adachi ◽  
Teruko Takano-Yamamoto
2021 ◽  
Vol 11 (9) ◽  
pp. 3824
Author(s):  
Ioana-Andreea Sioustis ◽  
Mihai Axinte ◽  
Marius Prelipceanu ◽  
Alexandra Martu ◽  
Diana-Cristala Kappenberg-Nitescu ◽  
...  

Finite element analysis studies have been of interest in the field of orthodontics and this is due to the ability to study the stress in the bone, periodontal ligament (PDL), teeth and the displacement in the bone by using this method. Our study aimed to present a method that determines the effect of applying orthodontic forces in bodily direction on a healthy and reduced periodontium and to demonstrate the utility of finite element analysis. Using the cone-beam computed tomography (CBCT) of a patient with a healthy and reduced periodontium, we modeled the geometric construction of the contour of the elements necessary for the study. Afterwards, we applied a force of 1 N and a force of 0.8 N in order to achieve bodily movement and to analyze the stress in the bone, in the periodontal ligament and the absolute displacement. The analysis of the applied forces showed that a minimal ligament thickness is correlated with the highest value of the maximum stress in the PDL and a decreased displacement. This confirms the results obtained in previous clinical practice, confirming the validity of the simulation. During orthodontic tooth movement, the morphology of the teeth and of the periodontium should be taken into account. The effect of orthodontic forces on a particular anatomy could be studied using FEA, a method that provides real data. This is necessary for proper treatment planning and its particularization depends on the patient’s particular situation.


2014 ◽  
Vol 100 ◽  
pp. 138-154 ◽  
Author(s):  
Lanhao Zhao ◽  
Jia Mao ◽  
Xin Bai ◽  
Xiaoqing Liu ◽  
Tongchun Li ◽  
...  

2012 ◽  
Vol 38 ◽  
pp. 335-347 ◽  
Author(s):  
Vincent Doyeux ◽  
Vincent Chabannes ◽  
Christophe Prud’homme ◽  
Mourad Ismail

2017 ◽  
Vol 20 (K3) ◽  
pp. 119-125
Author(s):  
Bang Kim Tran ◽  
Huy The Tran ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

Functionally graded material is of great importance in many engineering problems. Here the effect of multiple random inclusions in functionally graded material (FGM) is investigated in this paper. Since the geometry of entire model becomes complicated when many inclusions with different sizes appearing in the body, a methodology to model those inclusions without meshing the internal boundaries is proposed. The numerical method couples the level set method to the extended finite-element method (X-FEM). In the X-FEM, the finite-element approximation is enriched by additional functions through the notion of partition of unity. The level set method is used for representing the location of random inclusions. Numerical examples are presented to demonstrate the accuracy and potential of this technique. The obtained results are compared with available refered results and COMSOL, the finite element method software.


2015 ◽  
Vol 16 (9) ◽  
pp. 740-743 ◽  
Author(s):  
HP Raghuveer ◽  
M Hemanth ◽  
MS Rani ◽  
Chathura Hegde ◽  
B Vedavathi ◽  
...  

ABSTRACT Background Orthodontic tooth movement occurs due to various biomechanical changes in the periodontium. Forces within the optimal range yield maximum tooth movement with minimum deleterious effects. Among various types of tooth movements, extrusion and rotational movements are seen to be associated with the least amount of root resorption and have not been studied in detail. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with extrusion and rotational movements using the finite element method FEM. Materials and methods A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with extrusive and rotational movements by a 3D FEM using ANSYS software with linear material properties. Results It was observed that with the application of extrusive load, the tensile stresses were seen at the apex, whereas the compressive stress was distributed at the cervical margin. With the application of rotational movements, maximum compressive stress was distributed at the apex and cervical third, whereas the tensile stress was distributed on cervical third of the PDL on the lingual surface. Conclusion For extrusive movements, stress values over the periodontal ligament was within the range of optimal stress value as proposed by Lee, with a given force system by Profitt as optimum forces for orthodontic tooth movement using linear properties. During rotation there are stresses concentrated at the apex, hence due to the concentration of the compressive forces at the apex a clinician must avoid placing heavy stresses during tooth movement. How to cite this article Hemanth M, Raghuveer HP, Rani MS, Hegde C, Kabbur KJ, Vedavathi B, Chaithra D. An Analysis of the Stress Induced in the Periodontal Ligament during Extrusion and Rotation Movements: A Finite Element Method Linear Study Part I. J Contemp Dent Pract 2015;16(9):740-743.


Author(s):  
Naveen Viswanatha ◽  
Mark Avis ◽  
Moji Moatamedi

The surround and the spider of the loudspeaker suspension are modelled in ANSYS to carry out finite element analysis. The displacement dependent nonlinearities arising from the suspension are studied and the material and geometric effects leading to the nonlinearities are parameterised. The ANSYS models are simulated to be excited by a sinusoidal load and the results are evaluated by comparison with the results obtained by a physical model. The paper illustrates how practical models can be analysed using cost effective finite element models and also the extension of the models to experiment on various parameters, like changing the geometry for optimisation, by computer simulation.


Sign in / Sign up

Export Citation Format

Share Document