Food Web Implications of δ13C and δ15N Variability over 370 km of the Regulated Colorado River USA

2001 ◽  
Vol 37 (3) ◽  
pp. 179-191 ◽  
Author(s):  
J. P. Shannon ◽  
D. W. Blinn ◽  
G. A. Haden ◽  
E. P. Benenati ◽  
K. P. Wilson
2013 ◽  
Vol 73 (4) ◽  
pp. 743-746
Author(s):  
E. Benedito ◽  
L. Figueroa ◽  
A.M Takeda ◽  
GI. Manetta

The objective of this study was to evaluate the effect of Oreochromis niloticus cage culture promoted variations in the δ13C and δ15N in Corbicula fluminea (Mollusca; Bivalvia) and in the sediment of an aquatic food web. Samples were taken before and after net cage installation in the Rosana Reservoir (Paranapanema River, PR-SP). Samples of specimens of the bivalve filterer C. fluminea and samples of sediment were collected using a modified Petersen grab. All samples were dried in an oven (60 °C) for 72 hours, macerated to obtain homogenous fine powders and sent for carbon (δ13C) and nitrogen (δ15N) isotopic value analysis in a mass spectrometer. There were significant differences in the δ13C and δ15N values of the invertebrate C. fluminea between the beginning and the end of the experiment. There were no differences between the δ13C and δ15N values of sediment. These results indicate that the installation of fish cage culture promoted impacts in the isotopic composition of the aquatic food web organisms, which could exert influence over the native species and the ecosystem.


2011 ◽  
Vol 21 (6) ◽  
pp. 2016-2033 ◽  
Author(s):  
Wyatt F. Cross ◽  
Colden V. Baxter ◽  
Kevin C. Donner ◽  
Emma J. Rosi-Marshall ◽  
Theodore A. Kennedy ◽  
...  

2021 ◽  
Vol 19 (4) ◽  
Author(s):  
Rigoberto Rosas-Luis ◽  
Nancy Cabanillas-Terán ◽  
Carmen A. Villegas-Sánchez

Abstract Kajikia audax, Thunnus albacares, Katsuwonus pelamis, and Auxis spp. occupy high and middle-level trophic positions in the food web. They represent important sources for fisheries in Ecuador. Despite their ecological and economic importance, studies on pelagic species in Ecuador are scarce. This study uses stable isotope analysis to assess the trophic ecology of these species, and to determine the contribution of prey to the predator tissue. Isotope data was used to test the hypothesis that medium-sized pelagic fish species have higher δ15N values than those of the prey they consumed, and that there is no overlap between their δ13C and δ15N values. Results showed higher δ15N values for K. audax, followed by T. albacares, Auxis spp. and K. pelamis, which indicates that the highest position in this food web is occupied by K. audax. The stable isotope Bayesian ellipses demonstrated that on a long time-scale, these species do not compete for food sources. Moreover, δ15N values were different between species and they decreased with a decrease in predator size.


2011 ◽  
Vol 62 (2) ◽  
pp. 119 ◽  
Author(s):  
Adam Hartland ◽  
Graham D. Fenwick ◽  
Sarah J. Bury

Little is known about the feeding modes of groundwater invertebrates (stygofauna). Incorporation of sewage-derived organic matter (OM) into a shallow groundwater food web was studied using fluorescence and stable isotope signatures (δ13C and δ15N). Organic pollution was hypothesised to limit sensitive species’ abundances along the contamination gradient and isotope signatures of stygofauna consuming sewage-derived OM were expected to be enriched in δ15N. Stygofauna communities near a sewage treatment plant in New Zealand were sampled over 4 months and microbial biofilms were incubated in situ on native gravel for 1 month. As anticipated, OM stress-subsidy gradients altered stygofauna composition: the biomass of oligochaetes and Paraleptamphopus amphipods increased in OM-enriched groundwater (higher dissolved organic carbon (DOC) and tryptophan-like fluorescence), whereas other, probably less-tolerant taxa (e.g. ostracods, Dytiscidae) were absent. Isotopic signatures for stygofauna from polluted groundwater were consistent with assimilation of isotopically enriched sewage-N (δ15N values of 7–16‰), but highly depleted in δ13C relative to sewage. Negative 13C discriminations probably occur in Paraleptamphopus amphipods, and may also occur in oligochaetes and Dytiscidae, a finding with implications for the application of δ13C for determining food sources in groundwaters. Organic pollution of groundwaters may have serious repercussions for stygofauna community structure with potentially irreversible consequences.


2015 ◽  
Vol 34 (10) ◽  
pp. 2385-2394 ◽  
Author(s):  
David M. Walters ◽  
Emma Rosi-Marshall ◽  
Theodore A. Kennedy ◽  
Wyatt F. Cross ◽  
Colden V. Baxter

2011 ◽  
Vol 25 (14) ◽  
pp. 2089-2094 ◽  
Author(s):  
Anja Matuszak ◽  
Christian C. Voigt ◽  
Ilse Storch ◽  
Hans-Günther Bauer ◽  
Petra Quillfeldt

2012 ◽  
Vol 462 ◽  
pp. 175-190 ◽  
Author(s):  
P Prado ◽  
RH Carmichael ◽  
SA Watts ◽  
J Cebrian ◽  
KL Heck

2008 ◽  
Vol 65 (12) ◽  
pp. 2791-2806 ◽  
Author(s):  
Marianne Nilsen ◽  
Torstein Pedersen ◽  
Einar Magnus Nilssen ◽  
Stein Fredriksen

Stable isotopes of δ13C and δ15N were used to examine food sources and trophic structure of 65 taxa, representing 19 ecological groups, in a high-latitude ecosystem. Discrimination was made between pelagic and benthic carbon sources, where feeding in most cases reflected the habitat. Trophic levels from these analyses, TLN, were compared with corresponding levels estimated by an Ecopath mass-balance model, TLE, constructed independently of the isotope data. The good correlation between the two methods (r2 = 0.72) supports the diet composition and the grouping of taxa into ecological groups in the model. However, when estimates diverged, this was often explained by the analyses of few taxa, taxa that were not the most representative for the group, or the analyses of specimens from a limited size range. Some assumed detrivores were assigned high TLN in favour of an abundant microbial community in the sediments. High TLN estimates for many invertebrate taxa, combined with relatively low TLN for fishes, suggest that parts of the benthic food web are decoupled from the classical food web.


2015 ◽  
Vol 13 (2) ◽  
pp. 389-400 ◽  
Author(s):  
Norman Mercado-Silva ◽  
John Lyons ◽  
Rodrigo Moncayo-Estrada ◽  
Pablo Gesundheit ◽  
Trevor J. Krabbenhoft ◽  
...  

We explore the trophic role that a diverse sympatric group of fishes in the genus Chirostoma play in a large, shallow lake in central Mexico, Lake Chapala. We use δ13C and δ15N stable isotope - based food web analyses to explore how they relate to other components of the Lake Chapala ecosystem. We find five Chirostoma species in top trophic levels of the Chapala food web compared to other fishes, relying on a combination of zooplankton, fish and benthic resources as energy sources. Food web metric analyses showed generally overlapping trophic niches for members of Chirostoma, especially in terms of δ13C. However, C. jordani had lower mean δ15N isotopic values than C. promelas. As a group, "pescados blancos" (C. sphyraena and C. promelas) also had higher δ15N signatures than "charales" (C. consocium, C. jordani and C. labarcae) reflecting greater piscivory, but these differences were not strong for all food web metrics used. Trophic overlap among species of Chirostoma in Lake Chapala raises questions about the forces that might have led to a morphologically diverse but functionally similar and monophyletic group of species.


Sign in / Sign up

Export Citation Format

Share Document