Tracing sewage-derived organic matter into a shallow groundwater food web using stable isotope and fluorescence signatures

2011 ◽  
Vol 62 (2) ◽  
pp. 119 ◽  
Author(s):  
Adam Hartland ◽  
Graham D. Fenwick ◽  
Sarah J. Bury

Little is known about the feeding modes of groundwater invertebrates (stygofauna). Incorporation of sewage-derived organic matter (OM) into a shallow groundwater food web was studied using fluorescence and stable isotope signatures (δ13C and δ15N). Organic pollution was hypothesised to limit sensitive species’ abundances along the contamination gradient and isotope signatures of stygofauna consuming sewage-derived OM were expected to be enriched in δ15N. Stygofauna communities near a sewage treatment plant in New Zealand were sampled over 4 months and microbial biofilms were incubated in situ on native gravel for 1 month. As anticipated, OM stress-subsidy gradients altered stygofauna composition: the biomass of oligochaetes and Paraleptamphopus amphipods increased in OM-enriched groundwater (higher dissolved organic carbon (DOC) and tryptophan-like fluorescence), whereas other, probably less-tolerant taxa (e.g. ostracods, Dytiscidae) were absent. Isotopic signatures for stygofauna from polluted groundwater were consistent with assimilation of isotopically enriched sewage-N (δ15N values of 7–16‰), but highly depleted in δ13C relative to sewage. Negative 13C discriminations probably occur in Paraleptamphopus amphipods, and may also occur in oligochaetes and Dytiscidae, a finding with implications for the application of δ13C for determining food sources in groundwaters. Organic pollution of groundwaters may have serious repercussions for stygofauna community structure with potentially irreversible consequences.

1990 ◽  
Vol 22 (1-2) ◽  
pp. 251-259 ◽  
Author(s):  
R. Pujol

The sewage treatment plant of Metabief (East of France) has been monitored during three weeks in winter 1988. The treatment associates a physico-chemical treatment with a biological process of biofiltration. The first step eliminates about 60 % of the organic matter (COD and BOD). The biofliters improve the treatment removing 60 % of COD influent and 65 % of TSS. The process is efficient (N excepted) under conditions of the experiment but nitrification is limited by cold temperatures (< 10°C). Important results related to biological sludge product are presented (sludge characteristic, microscopic data, sludge production). Power consumption of biofliters represents 70 % of the total plant needs. Adequate control of washing cycles and close survey of numerous movable devices are of the utmost importance to guarantee the proper operating of biofliters.


2021 ◽  
Vol 19 (4) ◽  
Author(s):  
Rigoberto Rosas-Luis ◽  
Nancy Cabanillas-Terán ◽  
Carmen A. Villegas-Sánchez

Abstract Kajikia audax, Thunnus albacares, Katsuwonus pelamis, and Auxis spp. occupy high and middle-level trophic positions in the food web. They represent important sources for fisheries in Ecuador. Despite their ecological and economic importance, studies on pelagic species in Ecuador are scarce. This study uses stable isotope analysis to assess the trophic ecology of these species, and to determine the contribution of prey to the predator tissue. Isotope data was used to test the hypothesis that medium-sized pelagic fish species have higher δ15N values than those of the prey they consumed, and that there is no overlap between their δ13C and δ15N values. Results showed higher δ15N values for K. audax, followed by T. albacares, Auxis spp. and K. pelamis, which indicates that the highest position in this food web is occupied by K. audax. The stable isotope Bayesian ellipses demonstrated that on a long time-scale, these species do not compete for food sources. Moreover, δ15N values were different between species and they decreased with a decrease in predator size.


2009 ◽  
Vol 149 (1-3) ◽  
pp. 311-318 ◽  
Author(s):  
Roberto Rosal ◽  
Antonio Rodríguez ◽  
José Antonio Perdigón-Melón ◽  
Alice Petre ◽  
Eloy García-Calvo

2014 ◽  
Vol 700 ◽  
pp. 447-450
Author(s):  
Yun Qian ◽  
Tao Wu ◽  
Meng Fan Zhang

pH parameter is one of the main factors influencing organic degradation in the sewage treatment, and the degradation of organic matter in biochemical treatment unit is the largest, the hydrolysis acidification processing unit is the second largest. When the water pH range of biochemical treatment unit is [6.8 7.2], organic degradation is in the largest degree. The pH range of neutralization unit must be based on a subsequent hydrolysis acidification treatment unit, in order to adjust the pH range dynamically. Finally we make wastewater treated by biochemical unit meet the pH standard, and make the organic matter degrade in the largest degree. We designed chemical wastewater pH intelligent control device based on MSP430F149 MCU. The application of this device shows that the method has high control accuracy, less drug consumption and has large organic matter degradation in the sewage treatment plant, etc.


1991 ◽  
Vol 24 (10) ◽  
pp. 327-328
Author(s):  
Ingemar Karlsson

Chemical treatment of sewage water is today often considered as a method for phosphorus reduction and used in combination with biological treatment. The experience in Scandinavia, however, shows that chemical treatment alone gives beside a good phosphorus removal also a high BOD reduction. Due to the very low investment cost for such a process it has been adapted in Scandinavia as an alternative to biological treatment. Where the demand is for greater sewage treatment the most feasible method is to complement the chemical precipitation process with a compact biological treatment. In Sweden the dominating post (and also the simultaneous) precipitation process has in many plants been replaced by a chemical pre-treatment process, because with pre-precipitation most of the organic matter is coagulated and extracted already in the primary clarifier. The energy demand in the biological process will decrease. The organic matter in the sludge will increase, which in an anaerobic digester means more digester gas. The unloading pre-precipitation effect can also give advantages for nitrification. The important BOD/TKN ratio is decreased. It is possible to build up a high sludge age and to upgrade a plant without tank expansion to a nitrifying plant. Pre-precipitation is normally not influencing the readily degradable BOD, which is about 25% of the total BOD and therefore a perfect electron donor for pre-denitri-fication is still available. The pre-precipitated sludge contains 75% of the organic matter in the sewage and can by hydrolysis be converted to readily degradable organic matter, which presents a valuable carbon source for the denitrification process. The hydrolysation process can be performed by, for instance, anaerobic treatment or heat treatment. This paper will review experiences from full-scale applications as well as pilot plant and laboratory studies.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5460 ◽  
Author(s):  
Fleur C. Van Duyl ◽  
Benjamin Mueller ◽  
Erik H. Meesters

Sponges are ubiquitous on coral reefs, mostly long lived and therefore adaptive to changing environmental conditions. They feed on organic matter withdrawn from the passing water and they may harbor microorganisms (endosymbionts), which contribute to their nutrition. Their diets and stable isotope (SI) fractionation determine the SI signature of the sponge holobiont. Little is known of spatio–temporal variations in SI signatures of δ13C and δ15N in tropical sponges and whether they reflect variations in the environment. We investigated the SI signatures of seven common sponge species with different functional traits and their potential food sources between 15 and 32 m depth along the S-SE and E-NE side of the Saba Bank, Eastern Caribbean, in October 2011 and October 2013. SI signatures differed significantly between most sponge species, both in mean values and in variation, indicating different food preferences and/or fractionation, inferring sponge species-specific isotopic niche spaces. In 2011, all sponge species at the S-SE side were enriched in d13C compared to the E-NE side. In 2013, SI signatures of sponges did not differ between the two sides and were overall lighter in δ13C and δ15N than in 2011. Observed spatio–temporal changes in SI in sponges could not be attributed to changes in the SI signatures of their potential food sources, which remained stable with different SI signatures of pelagic (particulate organic matter (POM): δ13C −24.9‰, δ15N +4.3‰) and benthic-derived food (macroalgae: δ13C −15.4‰, δ15N +0.8‰). Enriched δ13C signatures in sponges at the S-SE side in 2011 are proposed to be attributed to predominantly feeding on benthic-derived C. This interpretation was supported by significant differences in water mass constituents between sides in October 2011. Elevated NO3 and dissolved organic matter concentrations point toward a stronger reef signal in reef overlying water at the S-SE than N-NE side of the Bank in 2011. The depletions of δ13C and δ15N in sponges in October 2013 compared to October 2011 concurred with significantly elevated POM concentrations. The contemporaneous decrease in δ15N suggests that sponges obtain their N mostly from benthic-derived food with a lower δ15N than pelagic food. Average proportional feeding on available sources varied between sponge species and ranged from 20% to 50% for benthic and 50% to 80% for pelagic-derived food, assuming trophic enrichment factors of 0.5‰ ± sd 0.5 for δ13C and 3‰ ± sd 0.5 for δ15N for sponges. We suggest that observed variation of SI in sponges between sides and years were the result of shifts in the proportion of ingested benthic- and pelagic-derived organic matter driven by environmental changes. We show that sponge SI signatures reflect environmental variability in space and time on the Saba Bank and that SI of sponges irrespective of their species-specific traits move in a similar direction in response to these environmental changes.


Sign in / Sign up

Export Citation Format

Share Document