Research on the variation law of heating temperature field and the effective energy utilization rate of a steam coil for the floating roof tank

2016 ◽  
Vol 70 (12) ◽  
pp. 1345-1355 ◽  
Author(s):  
S. Wei ◽  
C. Qinglin ◽  
S. Zhe ◽  
L. Yang ◽  
W. Peidi ◽  
...  
2018 ◽  
Vol 175 ◽  
pp. 02024 ◽  
Author(s):  
Heng Wang ◽  
Shukun Cao ◽  
Yi Cui ◽  
Zijian Cao ◽  
Shuqiang Xu

In order to improve the working efficiency of the drying tower and the hot blast stove in the process of grain drying, this paper proposes a method to solve the problems of air pollution and energy waste caused by excessive combustion or insufficient combustion of the hot blast stove. Based on finite element analysis, this paper uses ANSYS software to simulate the drying process of grain. This paper briefly introduces the grain drying device model and working mechanism, analyzes the temperature field of the drying device, and studies the influence on the drying effect of the working parameters (hot water, hot air, hot air hot blast stove combustion temperature) during the grain drying process. The results show that the hot air temperature is 85°C, the hot water temperature is 90°C, the combustion chamber temperature is 480°C, the grain drying effect is good, the combustion efficiency of the combustion furnace is the best, and the energy utilization rate is the highest.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 673
Author(s):  
Wei Yuan ◽  
Cheng Xu ◽  
Li Xue ◽  
Hui Pang ◽  
Axiu Cao ◽  
...  

Double microlens arrays (MLAs) in series can be used to divide and superpose laser beam so as to achieve a homogenized spot. However, for laser beam homogenization with high coherence, the periodic lattice distribution in the homogenized spot will be generated due to the periodicity of the traditional MLA, which greatly reduces the uniformity of the homogenized spot. To solve this problem, a monolithic and highly integrated double-sided random microlens array (D-rMLA) is proposed for the purpose of achieving laser beam homogenization. The periodicity of the MLA is disturbed by the closely arranged microlens structures with random apertures. And the random speckle field is achieved to improve the uniformity of the homogenized spot by the superposition of the divided sub-beams. In addition, the double-sided exposure technique is proposed to prepare the rMLA on both sides of the same substrate with high precision alignment to form an integrated D-rMLA structure, which avoids the strict alignment problem in the installation process of traditional discrete MLAs. Then the laser beam homogenization experiments have been carried out by using the prepared D-rMLA structure. The laser beam homogenized spots of different wavelengths have been tested, including the wavelengths of 650 nm (R), 532 nm (G), and 405 nm (B). The experimental results show that the uniformity of the RGB homogenized spots is about 91%, 89%, and 90%. And the energy utilization rate is about 89%, 87%, 86%, respectively. Hence, the prepared structure has high laser beam homogenization ability and energy utilization rate, which is suitable for wide wavelength regime.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 600
Author(s):  
Bin Ouyang ◽  
Lu Qu ◽  
Qiyang Liu ◽  
Baoye Tian ◽  
Zhichang Yuan ◽  
...  

Due to the coupling of different energy systems, optimization of different energy complementarities, and the realization of the highest overall energy utilization rate and environmental friendliness of the energy system, distributed energy system has become an important way to build a clean and low-carbon energy system. However, the complex topological structure of the system and too many coupling devices bring more uncertain factors to the system which the calculation of the interval power flow of distributed energy system becomes the key problem to be solved urgently. Affine power flow calculation is considered as an important solution to solve uncertain steady power flow problems. In this paper, the distributed energy system coupled with cold, heat, and electricity is taken as the research object, the influence of different uncertain factors such as photovoltaic and wind power output is comprehensively considered, and affine algorithm is adopted to calculate the system power flow of the distributed energy system under high and low load conditions. The results show that the system has larger operating space, more stable bus voltage and more flexible pipeline flow under low load condition than under high load condition. The calculation results of the interval power flow of distributed energy systems can provide theoretical basis and data support for the stability analysis and optimal operation of distributed energy systems.


2021 ◽  
Vol 245 ◽  
pp. 01020
Author(s):  
Aixia Xu ◽  
Xiaoyong Yang

The input-output method is employed in this study to measure the total carbon emission of the logistics industry in Guangdong. The findings revealed that the carbon emission of direct energy consumption of the logistics industry in Guangdong is far above the actual carbon emissions, the second and third industries play a significant role in carbon emission of indirect energy consumption in the logistics industry in Guangdong. To reduce energy consumption and carbon emissions in Guangdong, it is not only important to control the carbon emissions in the logistics industry, but strengthen carbon emission detection in relevant industries, improve the energy utilization rate and reduce emissions in other industries, and move towards low-carbon sustainable development.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4903
Author(s):  
Yasutsugu Baba ◽  
Andante Hadi Pandyaswargo ◽  
Hiroshi Onoda

Forests cover two-thirds of Japan’s land area, and woody biomass is attracting attention as one of the most promising renewable energy sources in the country. The Feed-in Tariff (FIT) Act came into effect in 2012, and since then, woody biomass power generation has spread rapidly. Gasification power generation, which can generate electricity on a relatively small scale, has attracted a lot of attention. However, the technical issues of this technology remain poorly defined. This paper aims to clarify the problems of woody biomass gasification power generation in Japan, specifically on the challenges of improving energy utilization rate, the problem of controlling the moisture content, and the different performance of power generation facilities that uses different tree species. We also describe the technological development of a 2 MW updraft reactor for gasification and bio-oil coproduction to improve the energy utilization rate. The lower heating value of bio-oil, which was obtained in the experiment, was found to be about 70% of A-fuel oil. Among the results, the importance of controlling the moisture content of wood chips is identified from the measurement evaluation of a 0.36 MW-scale downdraft gasifier’s actual operation. We discuss the effects of tree species variation and ash on gasification power generation based on the results of pyrolysis analysis, industry analysis for each tree species. These results indicate the necessity of building a system specifically suited to Japan’s climate and forestry industry to allow woody biomass gasification power generation to become widespread in Japan.


Sign in / Sign up

Export Citation Format

Share Document