Non-thermal processing has an impact on the digestibility of the muscle proteins

Author(s):  
Zuhaib F. Bhat ◽  
James D. Morton ◽  
Alaa El-Din A. Bekhit ◽  
Sunil Kumar ◽  
Hina F. Bhat
2019 ◽  
Vol 4 (3) ◽  
pp. 19-23
Author(s):  
Irina V. Agafonkina ◽  
Igor A. Korolev ◽  
Taras A. Sarantsev

In the temperature range from 45 °C to 90 °C the process of thermal denaturation of a whole complex of muscle proteins in meat takes place. An effective mode to register the thermal denaturation process is the method of differential scanning calorimetry (DSC). As a result of studies the differences during the process of thermal denaturation of muscle proteins of pork, beef, chicken and turkey were defined by the appearance of endothermic peaks in DSC thermograms. The main variances are associated with the process of denaturation of myosin and sacroplasmic proteins and indicate indirectly their quantitative ratio in meat. The values of effective specific heat capacity in the temperature range from 20 °C to 90 °C are obtained as well as those of heat spent on the denaturation process.At reheating, the values of specific heat capacity increased by 0.1 J/(g*K) on the average, and peaks of thermal denaturation were not detected, that certifies the irreversibility of the denaturation process and the decrease in the bound moisture proportion in meat after thermal processing. Knowledge of the nature of protein thermal denaturation of each kind of meat product is one of the necessary tools for developing the technology of meat product thermal processing.


LWT ◽  
2018 ◽  
Vol 98 ◽  
pp. 559-567 ◽  
Author(s):  
Meng Liu ◽  
Guang-Yu Liu ◽  
Yang Yang ◽  
Xue-Jiao Mei ◽  
Huang Yang ◽  
...  

Alloy Digest ◽  
2000 ◽  
Vol 49 (10) ◽  

Abstract HR-120 alloy is an alloy designed for thermal processing. It possesses excellent strength, oxidizing hot corrosion resistance, good carburization resistance, and oxidation resistance through 1093 deg C (2000 deg F). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-561. Producer or source: Rolled Alloys.


Author(s):  
А. Zykov ◽  
S. Orlova ◽  
L. Ovsiannykova

The methods of energy efficiency increasing of pre- and post-harvest thermal processing of grain are considered. The effective ways to deliver energy to the grain using heat pipes and microwave field are given. The effect of combined action of microwave and low-frequency radiation on the grain germination is shown. Currently, the intensification of technological processes under the influence of microwave radiation is used in many industrial processes. Microwave equipment is becoming a necessary technological component of large profitable industries. The process of drying is no exception. In recent years, new versions of dryers have been proposed that use combined methods of energy supply, including microwave energy. Microwave dryers for foodstuffs, grains and oilseeds, including those for seed stock, have been created and are beginning to be used, along with drying and disinfection, disinfection of drying products from harmful bacteria, fungi, and mildew. For the implementation of microwave drying of particular importance is the choice of regime parameters of drying, given the fact that the grain is a biologically active object. Microwave drying allows you to provide a powerful flow of energy to the object of drying and to obtain a significant intensification of moisture evaporation. But at the same time there is also an intense heating of the product, which can degrade its quality. The possibility of supplying energy throughout the cross section of the product allows for the evaporation of moisture from the inner layers of the product, which is especially important at the end of drying, when the zone of evaporation of moisture is significantly deeper. Therefore, the highest drying efficiency can be obtained in combined processes that take advantage of various drying methods, such as convective, as well as the use of microwave and low-frequency magnetic fields. The paper presents effective ways to supply energy to the grain using heat pipes and a microwave field. The effect of the combined action of microwave and low-frequency radiation on grain similarity is shown. Ways to improve the energy efficiency of the processes of preseeding and post-harvest heat treatment of grain are considered.


1994 ◽  
Vol 30 (8) ◽  
pp. 139-148 ◽  
Author(s):  
M. Hiraoka

As a result of the spread of sewerage systems, the management of growing quantities of sewage sludge is becoming an urgent need. As the method of sludge management, thermal processes have mostly been applied to the treatment and disposal of sewage sludge in Japan, because of the difficulty of finding final disposal sites. This paper describes the progress of thermal processing technologies, especially focusing on drying-incineration process systems and melting-slag recycling process systems.


Sign in / Sign up

Export Citation Format

Share Document