Biological Activities Studies and Phase Transfer Catalysts Promoting the One-Pot Synthesis of N-Aryl-N′-(4-Ethyloxy Benzoyl)-Thiourea Derivatives

2006 ◽  
Vol 181 (12) ◽  
pp. 2691-2698 ◽  
Author(s):  
Jing-Han Hu ◽  
Liang-Cheng Wang ◽  
Hong Liu ◽  
Tai-Bao Wei
2021 ◽  
Vol 18 ◽  
Author(s):  
Monika Verma ◽  
Ajay Thakur ◽  
Renu Sharma ◽  
Ruchi Bharti

: The history of tri-substituted methanes (TRSMs) in chemical industries is much older. Tri-substituted methanes were previously used as dyes in the chemical industries. Still, there is a significant surge in researchers' interest in them due to their wide range of bioactivities. Tri-substituted methane derivatives show a wide range of biological activities like anti-tumor, antimicrobial, antibiofilm, antioxidant, anti-inflammatory, anti-arthritic activities. Due to the wide range of medicinal applications shown by tri-substituted methanes, most of the methodologies reported in the literature for the synthesis of TRSMs are focused on the one-pot method. This review explored the recently reported one-pot processes for synthesizing tri-substituted methanes and their various medicinal applications. Based on the substitution attached to the -CH carbon, this review categorizes them into two major classes: (I) symmetrical and (II) unsymmetrical trisubstituted methanes. In addition, this review gives an insight into the growing opportunities for the construction of trisubstituted scaffolds via one-pot methodologies. To the best of our knowledge, no one has yet reported a review on the one-pot synthesis of TRSMs. Therefore, here we present a brief literature review of the synthesis of both symmetrical and unsymmetrical TRSMs covering various one-pot methodologies along with their medicinal applications.


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


2020 ◽  
Vol 24 (20) ◽  
pp. 2341-2355
Author(s):  
Thaipparambil Aneeja ◽  
Sankaran Radhika ◽  
Mohan Neetha ◽  
Gopinathan Anilkumar

One-pot syntheses are a simple, efficient and easy methodology, which are widely used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from imidazolines. The one-pot method is an impressive approach to synthesize organic compounds as it minimizes the reaction time, separation procedures, and ecological impact. Many significant one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran, triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis. This review describes an overview of the one-pot synthesis of imidazolines and covers literature up to 2020.


Sign in / Sign up

Export Citation Format

Share Document