A Comparative Investigation on Surface Roughness and Residual Stress during End-Milling AISI H13 Steel with Different Geometrical Inserts

2011 ◽  
Vol 26 (8) ◽  
pp. 1085-1093 ◽  
Author(s):  
T. C. Ding ◽  
S. Zhang ◽  
H. G. Lv ◽  
X. L. Xu
2014 ◽  
Vol 800-801 ◽  
pp. 590-595
Author(s):  
Qing Zhang ◽  
Song Zhang ◽  
Jia Man ◽  
Bin Zhao

Surface roughness has a significant effect on the performance of machined components. In the present study, a total of 49 end milling experiments on AISI H13 steel are conducted. Based on the experimental results, the signal-to-noise (S/N) ratio is employed to study the effects of cutting parameters (axial depth of cut, cutting speed, feed per tooth and radial depth of cut) on surface roughness. An ANN predicting model for surface roughness versus cutting parameters is developed based on the experimental results. The testing results show that the proposed model can be used as a satisfactory prediction for surface roughness.


Procedia CIRP ◽  
2018 ◽  
Vol 71 ◽  
pp. 329-334 ◽  
Author(s):  
Andreas Reimer ◽  
Xichun Luo

Author(s):  
W. Li ◽  
Y. B. Guo

Dry machining is a cluster of sustainable manufacturing processes to eliminate the negative environmental effect of machining coolants. It is critical to ensure that product quality cannot be sacrificed for achieving sustainability. The progress of tool flank wear during hard milling adversely affects surface integrity and, therefore, fatigue life of machined components. This paper focuses on the influence of tool flank wear on residual stress and fatigue properties in dry end milling AISI H13 tool steel (50 ± 1 HRC) using PVD coated tools. The effects of flank wear (VB = 0, 0.1, and 0.2 mm) on residual stresses at three different feeds were studied. Four-point bending fatigue tests were performed on the samples machined at five levels of tool flank wears (VB = 0, 0.05, 0.10, 0.15, 0.20 mm) and surface fatigue initiations of the fatigued samples were identified by the fractographic method.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 928
Author(s):  
Elisabeth Guenther ◽  
Moritz Kahlert ◽  
Malte Vollmer ◽  
Thomas Niendorf ◽  
Christian Greiner

Additive manufacturing of metallic tribological components offers unprecedented degrees of freedom, but the surface roughness of most as-printed surfaces impedes the direct applicability of such structures, and postprocessing is necessary. Here, the tribological performance of AISI H13 steel samples was studied. These were additively manufactured through laser powder bed fusion (L-PBF), also referred to as selective laser melting (SLM). Samples were tested in four different surface conditions: as-printed, polished, ground and polished, and laser-surface-textured (LST) with round dimples. Friction experiments were conducted in a pin-on-disk fashion against bearing steel disks under lubrication with an additive-free mineral base oil for sliding speeds between 20 and 170 mm/s. Results demonstrated that, among the four surface treatments, grinding and polishing resulted in the lowest friction coefficient, followed by the as-printed state, while both polishing alone and laser-surface texturing increased the friction coefficient. Surprisingly, direct correlation between surface roughness and friction coefficient, i.e., the rougher the surface was, the higher the friction force, was not observed. Wear was minimal in all cases and below what could be detected by gravimetrical means. These results highlight the need for an adequate post-processing treatment of additively manufactured parts that are to be employed in tribological systems.


Sign in / Sign up

Export Citation Format

Share Document