Fast and Slow Release: Synthesis of Gelatin Casted-Film Based Drug Delivery System

2015 ◽  
Vol 31 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Anindita Laha ◽  
Utkarsh Bhutani ◽  
Kishalay Mitra ◽  
Saptarshi Majumdar
2013 ◽  
Vol 320 ◽  
pp. 495-504 ◽  
Author(s):  
Guo Jing Gou ◽  
Li E Dong ◽  
Feng Juan Bao ◽  
Zhi Yu Wang ◽  
Lin Jiao ◽  
...  

This paper reviewed our research progress in respects of th intercalation law of acetylsalicylic acid (ASP) with magnesium aluminate layered double hydroxide (LDH), the drug release mechanism and the tablet preparation effect of LDH-ASP system. We also discussed the propositions about the composite assembly rules, slow-release mechanism, and dosage form processing of the layered double hydroxide drug delivery system. Intercalation way and drug structure should be taken into consideration in assembly LDH-drugs system. The characteristic parameter of the composite LDH-drug reflected finely their loading efficiency and correlated definitely with drug release property. It had been found that the release rate and extent of intercalated drug was closely linked to the retarding status of LDH interlayer, which was dependent on the exchange mole ratio of n(drug) with n[HnPO4(3-n)-]. In addition, the grafting reaction and phase transformation degree of LDH layer was hinged on the acidity of solution. The slow-release function of the LDH-drug system could be improved significantly by compositing with dextran (DET). A sustained-release skeleton tablet was producted with DET-LDH-ASP drug delivery system and hydrophilic gel material HPMC, which could effectively overcome the "first pass effect" and " burst release problem" of LDH-drug oral agents. The slow-release effect of LDH drug delivery system could be ulteriorly improved in systemic circulation environments, attributed to the triple control of HPMC-DET-LDH, DET-LDH-drugs three-level supramolecular assembly and the special circulation in vivo. Key words: Layered double hydroxide, Supramolecular assembly, Release control, Slow controlled release drug delivery system


2010 ◽  
Vol 46 (8) ◽  
pp. 2587-2599 ◽  
Author(s):  
Baljit Singh ◽  
Nisha Sharma ◽  
Vikrant Sharma

2021 ◽  
Vol 24 (3) ◽  
pp. 91-100
Author(s):  
Khafidhotun Naimah ◽  
Harjono Harjono ◽  
Jumaeri Jumaeri ◽  
Sri Kadarwati

Diclofenac sodium is a non-steroidal anti-inflammatory drug with a relatively short release time. This short release time promotes a more frequent drug consumption and could lead to side effects in the stomach, e.g., gastrointestinal disorders, gastrointestinal bleeding, and gastric ulcers. A drug delivery system with a slow-release activity is one of the promising technologies to control the drug amount released to the stomach. A surfactant-modified natural zeolite as a carrier for diclofenac sodium has been used in this study. This study focused on the preparation, characterization, and slow-release performance of HDTMA-modified natural zeolite as a carrier for diclofenac sodium. The zeolite underwent chemical and physical activation, as well as milling prior to use. It was proven that the zeolite used was dominated by mordenite and clinoptilolite with high stability properties towards acid treatments, as indicated by the XRD patterns. A modification of the zeolite surface using HDTMABr was also successfully performed, indicated by the appearance of peaks at wavenumbers of 2923.05 cm-1 and 2853.39 cm-1 (symmetrical and asymmetrical CH2 strains of HDTMA molecules, respectively) in the FTIR spectra. The synthesized HDTMA-modified natural zeolite also showed an excellent surface property such as surface area, pore-volume, and size, as indicated by the BET-BJH isotherms on the nitrogen adsorption. The slow-release performance of the zeolite-based drug delivery system was studied by investigating the adsorption-desorption behavior of HDTMA-modified zeolite towards diclofenac sodium. The HDTMA-modified zeolite adsorbed the diclofenac sodium of 54.01% at a pH of 7.5, the contact time of 60 min, and the initial concentration of 100 ppm. The adsorbed diclofenac sodium of 73.95% could be released from the HDTMA-modified adsorbent for 8 h, mimicking the time length of drug metabolism in the human body.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
AR Bilia ◽  
G Capecchi ◽  
MC Salvatici ◽  
B Isacchi ◽  
MC Bergonzi

Sign in / Sign up

Export Citation Format

Share Document