Laser cladding process of Cobalt and Nickel based hard-micron-layers on 316L-stainless-steel-substrate

2019 ◽  
Vol 35 (2) ◽  
pp. 142-151 ◽  
Author(s):  
N. Jeyaprakash ◽  
Che-Hua Yang ◽  
S. Sivasankaran
Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1104
Author(s):  
Zexu Du ◽  
Zhengfei Hu ◽  
Yuqiang Feng ◽  
Fan Mo

Two kinds of 60NiTi powders were prepared by pure Ni mixed with Ti powders, and 55NiTi alloy powder with pure Ni powder and both the powders were fully mixed by alcohol ball milling. Two kinds of coatings (denoted as 60Ni-40Ti and 55NiTi-5Ni) were prepared on a 316L stainless steel substrate by laser cladding. The microstructure, microhardness and electrochemical behavior of the prepared coatings were investigated extensively. The results show that 55NiTi-5Ni has a typical dendritic eutectic structure, but 60Ni-40Ti tends to form a eutectic network structure. The main phases in both coatings are (Ni, Fe)Ti and (Ni, Fe)3Ti; however, the (Ni, Fe)Ti phase is dominant in 55NiTi-5Ni, but the (Ni, Fe)3Ti phase is more prevalent in 60Ni-40Ti. The microhardness was significantly improved with the 316L stainless steel substrate, and the microhardness of 55NiTi-5Ni is slightly higher than 60Ni-40Ti. The corrosion resistance of the two coatings in 3.5 wt% NaCl solution also leads to significant improvements compared with the substrate, and the corrosion resistance of 55NiTi-5Ni was also increased. These different behaviors and characteristics might be related to the different microstructures. Uniform and fine eutectic structure in 55NiTi-5Ni coating lead to better performance, which is also conducive to the formation of the dense oxide film to improve corrosion resistance.


2015 ◽  
Vol 1119 ◽  
pp. 628-632
Author(s):  
Alain Kusmoko ◽  
Druce Dunne ◽  
Hui Jun Li

Stellite 6 was deposited by laser cladding on a martensitic stainless steel substrate with energy inputs of 1 kW (MSS-1) and 1.8 kW (MSS-1.8). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was assessed using a pin-on-plate (reciprocating) wear testing machine. The results showed less cracking and pore development for Stellite 6 coatings applied to the MSS steel substrate with the lower heat input (MSS-1). Further, the Stellite coating for MSS-1 was significantly harder than that obtained for MSS-1.8. The wear test results indicated that the weight loss for MSS-1 was much lower than for MSS-1.8. It is concluded that the lower hardness of the coating for MSS-1.8, markedly reduced the wear resistance of the Stellite 6 coating.


2010 ◽  
Vol 148-149 ◽  
pp. 740-743
Author(s):  
Wei Yan Liu ◽  
Xiu Yan Li ◽  
He Feng Wang ◽  
Rui Feng ◽  
Bin Tang

Titanium surface alloyed layer was fabricated on 316L stainless steel substrate at 1000°C by means of the plasma surface alloying technique. The content of element titanium in the surface alloyed layer shows gradually tapering from surface to the inside of the substrate and it means an excellent metallurgical binding between the surface modified layer and 316L stainless steel substrate. The hardness of the titanium surface alloyed Layer is 1305HK0.5, which is much larger than that of the 316L stainless steel substrate. The wear performance of the treated and untreated 316L stainless steel was studied using a ball-on-disc sliding wear machine. Although the titanium surface alloyed layer does not show a friction-reducing effect, it improves the wear resistance of 316L stainless steel significantly and its wear rate is only one-fifteenth of that for untreated 316L stainless steel.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 583 ◽  
Author(s):  
Pengxian Zhang ◽  
Yibin Pang ◽  
Mingwei Yu

WC-reinforced Ni60 composite coatings with different types of WC particles were prepared on 304 stainless steel surface by laser cladding. The influences of spherical WC, shaped WC, and flocculent WC on the microstructures and properties of composite coatings were investigated. The results showed that three types of WC particles distribute differently in the cladding coatings, with spherical WC particles stacking at the bottom, shaped WC aggregating at middle and lower parts, with flocculent WC particles dispersing homogeneously. The hardnesses, wear resistances, corrosion resistances, and thermal shock resistances of the coatings are significantly improved compared with the stainless steel substrate, regardless of the type of WC that is added, and especially with regard to the microhardness of the cladding coating; the addition of spherical or shaped WC particles can be up to 2000 HV0.05 in some areas. Flocculent WC, shaped WC, and spherical WC demonstrate large to small improvements in that order. From the results mentioned above, the addition of flocculent WC can produce a cladding coating with a uniform distribution of WC that is of higher quality compared with those from spherical WC and shaped WC.


2017 ◽  
Vol 48 (6) ◽  
pp. 2915-2926 ◽  
Author(s):  
Reena Awasthi ◽  
Geogy Abraham ◽  
Santosh Kumar ◽  
Kaustava Bhattacharyya ◽  
Nachiket Keskar ◽  
...  

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1047-1052 ◽  
Author(s):  
YUJIANG WANG ◽  
XINXIN MA ◽  
GUANGZE TANG

The micro-pores with size of 0.2 to 1.8 µm, which randomly distribute in a 316L stainless steel substrate, were fabricated by the transfer of the porous structure of anodic porous alumina. The mask anodic porous alumina was directly prepared by anodizing of aluminum film, which was deposited on 316L substrate by DC magnetron sputtering. The transfer of the porous structure of anodic alumina into the 316L substrate could be achieved without the additional through-hole treatment to the barrier layer. The localized priority dissolution on porous alumina is observed during the anodizing. And this process is considered to lead to the micro-pores formation on 316L substrate. In addition, the effect of anodizing time on the pores size and number on 316L substrate also was discussed.


2009 ◽  
Vol 419-420 ◽  
pp. 537-540
Author(s):  
Ming Hui Ding ◽  
Ben Li Wang ◽  
Li Li ◽  
Yu Feng Zheng

In this paper, the TaCx coating with thickness around 1.2 μm was prepared by radio frequency magnetron sputtering technique on the 316L stainless steel substrate to improve its hemocompatibility. The structure and morphology of the coating were characterized by XRD and SEM. The XRD results indicated that TaCx, as a new species, appeared on the surface of the 316L stainless steel substrate. SEM images showed that the surface morphology of the TaCx coating was uniform and dense. The mechanical characteristics of the coating were measured by nanoindentation, giving a nanohardness of 13 GPa and a Young’s modulus of 210 GPa. The adhesion strength of the TaCx coating to 316L stainless steel depended on the sputtering bias voltages and increased for a higher bias voltage. The hemocompatibility of the TaCx coating, as evaluated by platelet adhesion tests, was compared to that of the bare 316L stainless steel. The results indicated that the hemocompatibility of 316L stainless steel with TaCx coating was significantly improved as compared to the original one.


2014 ◽  
Vol 619 ◽  
pp. 13-17 ◽  
Author(s):  
Alain Kusmoko ◽  
Druce P. Dunne ◽  
Hui Jun Li

Stellite 6 was deposited by laser cladding on an austenitic stainless steel substrate (ASS) with energy inputs of 1 kW (ASS 1) and 1.8 kW (ASS 1.8). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was assessed using a pin-on-plate (reciprocating) wear testing machine. The results showed less cracking and pore development for Stellite 6 coatings applied to the austenitic stainless steel substrate with the lower heat input (ASS 1). Further, the Stellite coating for ASS 1 was significantly harder than that obtained for ASS 1.8. The wear test results showed that the weight loss for ASS 1 was much lower than for ASS 1.8. It is concluded that the lower hardness of the coating for ASS 1.8, together with the softer underlying substrate structure, markedly reduced the wear resistance of the Stellite 6 coating.


Sign in / Sign up

Export Citation Format

Share Document