scholarly journals Functionally graded coating (silver/yttria) multi layers by pulsed laser deposition technique on 316L stainless steel substrate

2021 ◽  
Vol 1973 (1) ◽  
pp. 012148
Author(s):  
Nabaa Sattar Radhi ◽  
Saja Hamza ◽  
Rafea Tuama Ahmed ◽  
Nebras Mohammed Sahi
2010 ◽  
Vol 148-149 ◽  
pp. 740-743
Author(s):  
Wei Yan Liu ◽  
Xiu Yan Li ◽  
He Feng Wang ◽  
Rui Feng ◽  
Bin Tang

Titanium surface alloyed layer was fabricated on 316L stainless steel substrate at 1000°C by means of the plasma surface alloying technique. The content of element titanium in the surface alloyed layer shows gradually tapering from surface to the inside of the substrate and it means an excellent metallurgical binding between the surface modified layer and 316L stainless steel substrate. The hardness of the titanium surface alloyed Layer is 1305HK0.5, which is much larger than that of the 316L stainless steel substrate. The wear performance of the treated and untreated 316L stainless steel was studied using a ball-on-disc sliding wear machine. Although the titanium surface alloyed layer does not show a friction-reducing effect, it improves the wear resistance of 316L stainless steel significantly and its wear rate is only one-fifteenth of that for untreated 316L stainless steel.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1047-1052 ◽  
Author(s):  
YUJIANG WANG ◽  
XINXIN MA ◽  
GUANGZE TANG

The micro-pores with size of 0.2 to 1.8 µm, which randomly distribute in a 316L stainless steel substrate, were fabricated by the transfer of the porous structure of anodic porous alumina. The mask anodic porous alumina was directly prepared by anodizing of aluminum film, which was deposited on 316L substrate by DC magnetron sputtering. The transfer of the porous structure of anodic alumina into the 316L substrate could be achieved without the additional through-hole treatment to the barrier layer. The localized priority dissolution on porous alumina is observed during the anodizing. And this process is considered to lead to the micro-pores formation on 316L substrate. In addition, the effect of anodizing time on the pores size and number on 316L substrate also was discussed.


2009 ◽  
Vol 419-420 ◽  
pp. 537-540
Author(s):  
Ming Hui Ding ◽  
Ben Li Wang ◽  
Li Li ◽  
Yu Feng Zheng

In this paper, the TaCx coating with thickness around 1.2 μm was prepared by radio frequency magnetron sputtering technique on the 316L stainless steel substrate to improve its hemocompatibility. The structure and morphology of the coating were characterized by XRD and SEM. The XRD results indicated that TaCx, as a new species, appeared on the surface of the 316L stainless steel substrate. SEM images showed that the surface morphology of the TaCx coating was uniform and dense. The mechanical characteristics of the coating were measured by nanoindentation, giving a nanohardness of 13 GPa and a Young’s modulus of 210 GPa. The adhesion strength of the TaCx coating to 316L stainless steel depended on the sputtering bias voltages and increased for a higher bias voltage. The hemocompatibility of the TaCx coating, as evaluated by platelet adhesion tests, was compared to that of the bare 316L stainless steel. The results indicated that the hemocompatibility of 316L stainless steel with TaCx coating was significantly improved as compared to the original one.


2011 ◽  
Vol 324 ◽  
pp. 89-92 ◽  
Author(s):  
Ahmad Hamdan ◽  
Cedric Noel ◽  
Gérard Hénrion ◽  
Thierry Belmonte

Interaction between streamer and 316L Stainless Steel substrate in heptane with micro-gaps gives craters with a very specific shape. The role of the Marangoni forces is stressed, a phenomenon which is generally neglected in EDM processes to describe the shape of the craters.


Sign in / Sign up

Export Citation Format

Share Document