Hydrous FE and MN oxides — scavengers of heavy metals in the aquatic environment

1984 ◽  
Vol 14 (1) ◽  
pp. 33-90 ◽  
Author(s):  
Shailendra K. Singh ◽  
V. Subramanian ◽  
Ronald J. Gibbs
1992 ◽  
Vol 7 (1-3) ◽  
pp. 201-223 ◽  
Author(s):  
A. Manceau ◽  
L. Charlet ◽  
M.C. Boisset ◽  
B. Didier ◽  
L. Spadini
Keyword(s):  

2008 ◽  
Vol 53 (No. 5) ◽  
pp. 216-224 ◽  
Author(s):  
M. Komárek ◽  
P. Tlustoš ◽  
J. Száková ◽  
V. Chrastný ◽  
J. Balík

In several cases ethylenediaminetetraacetic acid (EDTA) proved to be an efficient mobilising amendment during chemically enhanced phytoextraction of heavy metals. The presence of Fe-(hydr)oxides and their dissolution after the addition of EDTA can limit the phytoextraction of the targeted heavy metals due to the high stability of the formed Fe(III)EDTA complexes. This study has focused on the influence of Fe- and Mn-oxides and hydroxides dissolution on heavy metal uptake by <i>Zea mays</i> in a two-year EDTA-enhanced phytoextraction process. Incubation experiments and speciation modelling proved the increased concentrations of Mn and Fe through the dissolution of Mn-and Fe-(hydr)oxides. Furthermore, increased Fe and Mn accumulation was observed in maize plants after the second year of the phytoextraction process. Therefore, the presence of Mn- and especially Fe-(hydr)oxides proved to be a limiting factor during EDTA-enhanced phytoextraction of heavy metals from contaminated soils.


1970 ◽  
pp. 09
Author(s):  
K. SANKAR GANESH ◽  
P. SUNDARAMOORTHY

Heavy metals are one of the most important pollutants released to the aquatic environment by the various industrial activities. The use of these wastewater for irrigation results accumulation of heavy metals in soil and plants. So, the present investigation deals with the various concentrations (0, 5, 10, 25, 50, 100, 200 and 300 mg/l) of copper and zinc on germination studies of soybean. The different concentrations of copper and zinc were used for germination studies. The seedlings were allowed to grow upto seven days. The studied morphological traits increased at 5 mg/l concentration and these parameters are gradually decreased with the increase of copper and zinc concentrations.


2021 ◽  
Vol 616 ◽  
pp. 118100
Author(s):  
Narasimharao Katabathini ◽  
Islam Hamdy Abd El Maksod ◽  
Mohamed Mokhtar
Keyword(s):  

2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Nurrulhidayah Salamun ◽  
Sugeng Triwahyono ◽  
Aishah Abdul Jalil

Mercury is one of the most toxic pollutants which pose a great threat to both human health and organism security. A great deal of research over recent decades has been motivated by the requirement to lower the concentration of these heavy metals in water and the need to develop low cost techniques which can be widely applied for heavy metals remediation. Adsorption is by far the most reliable technologies for removing mercury from water. In this study, banana stem fibers, a natural biomass was loaded with zirconium (IV) to investigate its feasibility for mercury removal from an aquatic environment. The XRD pattern for both BSF-HCl and Zr/BSF-HCl exhibited mainly the cellulose I structure which consists of two distinct crystal phases. The FESEM images illustrated the presence of relatively well organized, pronounced and uniform cavities distributed around the surface, indicated a good possibility for the metal ions to be adsorbed. The result shows that Hg (II) adsorption capacity increased from 45 to 72 mg/g after the immobilization of Zr due to increase in the active sites on the adsorbent. 


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
He Zhu ◽  
Haijian Bing ◽  
Huapeng Yi ◽  
Yanhong Wu ◽  
Zhigao Sun

Land reclamation can significantly influence spatial distribution of heavy metals in inshore sediments. In this study, the distribution and contamination of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) in inshore sediments of Bohai Bay were investigated after the land reclamation of Caofeidian. The results showed that the concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the sediments were 0.20–0.65, 27.16–115.70, 11.14–39.00, 17.37–65.90, 15.08–24.06, and 41.64–139.56 mg/kg, respectively. These metal concentrations were generally higher in the area of Caofeidian than in other Chinese bays and estuaries. Spatially, the concentrations of Cd, Cr, Cu, Ni, and Zn were markedly lower in the sediments close to Caofeidian compared with other regions, whereas the concentrations of Pb showed an opposite case. Hydrodynamic conditions after the land reclamation were the major factor influencing the distribution of heavy metals in the sediments. Grain sizes dominated the distribution of Cu and Zn, and organic matters and Fe/Mn oxides/hydroxides also determined the distribution of the heavy metals. Multiple contamination indices showed that the inshore sediments were moderately to highly contaminated by Cd and slightly contaminated by other heavy metals. Similarly, Cd showed a high potential ecorisk in the sediments, and other metals were in the low level. Chromium contributed to higher exposure toxicity than other metals by the toxicity unit and toxic risk index. The results of this study indicate that after the land reclamation of Caofeidian the contamination and ecorisk of heavy metals in the sediments markedly decreased in the stronger hydrodynamic areas.


2021 ◽  
Vol 43 ◽  
pp. 137-152
Author(s):  
Fagbenro Oluwakemi Kehinde ◽  
Adediji Victor Adebowale ◽  
Olaniyan Olatunji Sunday ◽  
Babatola Olumide

The aim of this study is to evaluate the potential impacts of 8.5 MW thermal power plant on soil and water quality within its location, Lekki area, Lagos State. The study area was geo-referenced using the existing map and Geographical Positioning System. Auger was used to sample soil at three different locations within the power plant. The soil samples were prepared and analyzed for the following parameters using standard analytical methods. The parameters include soil texture, Exchangeable cations and anions (H+, Na+, Ca2+, Mg2+, Cl- and SO42-) Nutrients compounds (NO3-, Total Nitrogen (TN), Organic Carbon (OC) and heavy metals (Fe, Cd, As, and Mn). Surface and groundwater samples were collected within the power plant in triplicate and analyzed for true colour, turbidity, conductivity, salinity, THC and Coliform. Dissolved Oxygen (DO), BOD5, Total Organic Carbon (TOC), Organic Matter (OM) and heavy metals (As, Ag, Fe and Mn) of water samples were also analyzed. The soil from the study area is loamy-sand in texture. The average As, Ag, Fe and Mn in surface and groundwater samples were 0.055, 0.025, 3.150, 0.735 and 0.12, 0.080, 6.440 and 0.180 mg/L, respectively. The gas-fired power plant has contaminated the soil and water within its premises with petroleum and heavy metals. The engine stack should be modified to minimize the pollution effects of the power plant on the environment.


Sign in / Sign up

Export Citation Format

Share Document