Quality-by-design-based development and validation of a stability-indicating UPLC method for quantification of teriflunomide in the presence of degradation products and its application to in-vitro dissolution

2017 ◽  
Vol 40 (10) ◽  
pp. 517-527 ◽  
Author(s):  
Nukendra Prasad Nadella ◽  
Venkata Nadh Ratnakaram ◽  
N. Srinivasu
2021 ◽  
Vol 11 (5) ◽  
pp. 13089-13101

In this study, a sustainable HPLC-UV-DAD method was developed and validated for the determination of allopurinol in tablets and optimization of the dissolution test using factorial design. The separation of the analyte from the sample matrix was achieved in 3.01 minutes in a C8 column (4.6 mm X 150 mm X 5 μm), using mobile phase 0.1 mol L-1 HCl (25%) + ethanol (50%) + ultrapure water (25%) by UV detection at 249 nm. The method presented satisfactory analytical parameters of validation (specificity, selectivity, linearity, stability, precision, accuracy, and robustness), showing no matrix effects. The dissolution test was optimized by complete factorial design 23 and, the optimal conditions were: HCl 0.001 mol L-1, apparatus II (paddle) and 75 rpm. The analytical procedures and dissolution tests were applied to allopurinol tablets marketed in Bahia, Brazil, to evaluate the dissolution studies. The pharmaceuticals had similar dissolution profiles and first-order dissolution kinetics. This new and sustainable HPLC-UV-DAD method is friendly to the environment and can be used for the routine pharmaceutical analysis of allopurinol in fixed dosage forms.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (06) ◽  
pp. 16-26
Author(s):  
V Suthar ◽  
◽  
M Gokel ◽  
S Butani ◽  
A Solanki

The aim of the present study was to develop self-emulsifying drug delivery system (SEDDS) of aceclofenac for potential improvement in the in vitro dissolution. The Food and Drug Control Agency (FDCA) has put more stress on the quality, safety and efficacy of the dosage form. The use of design of experiments and quality by Design (QbD) in the development of self emulsifying drug delivery system (SEDDS) containing aceclofenac is demonstrated. The optimum formulation contained Labrafil M 1944 CS, Tween 80 and Transcutol P. The systematic approach enabled us in identifying the design space. The results revealed that while devising the control strategies during manufacturing, more attention should be focused on the ratios of oil to surfactant and surfactant to co-surfactant. The drug was released at a faster rate due to a large surface area. The current approach enabled us to develop a dosage form which is economic, patient-friendly and does not require assistance of a doctor or nurse, especially at remote places at odd hours.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5251
Author(s):  
Barbara Żuromska-Witek ◽  
Paweł Żmudzki ◽  
Marek Szlósarczyk ◽  
Anna Maślanka ◽  
Urszula Hubicka

The oxidation of lomefloxacin (LOM) and balofloxacin (BAL) under the influence of azo initiator of radical reactions of 4,4′-azobis(4-cyanopentanoic acid) (ACVA) and H2O2 was examined. Oxidation using H2O2 was performed at room temperature while using ACVA at temperatures: 40, 50, 60 °C. Additionally, the oxidation process of BAL under the influence of KMnO4 in an acidic medium was investigated. New stability-indicating HPLC methods were developed in order to evaluate the oxidation process. Chromatographic analysis was carried out using the Kinetex 5u XB—C18 100A column, Phenomenex (Torrance, CA, USA) (250 × 4.6 mm, 5 μm particle size, core shell type). The chromatographic separation was achieved while using isocratic elution and a mobile phase with the composition of 0.05 M phosphate buffer (pH = 3.20 adjusted with o-phosphoric acid) and acetonitrile (87:13 v/v for LOM; 80:20 v/v for BAL). The column was maintained at 30 °C. The methods were validated according to the ICH guidelines, and it was found that they met the acceptance criteria. An oxidation process followed kinetics of the second order reaction. The most probable structures of LOM and BAL degradation products formed were assigned by the UHPLC/MS/MS method.


Sign in / Sign up

Export Citation Format

Share Document