HPLC study for evaluating the significance of pH in the inhibiting effect of phosphate buffer on the leaching pattern of resin composites

2018 ◽  
Vol 41 (8) ◽  
pp. 430-436
Author(s):  
Petros Mourouzis ◽  
Victoria Samanidou ◽  
Elisabeth A. Koulaouzidou ◽  
Georgios Palaghias
1927 ◽  
Vol 11 (2) ◽  
pp. 111-121 ◽  
Author(s):  
Marian Irwin

When living cells of Nitella are exposed to a solution of sodium acetate and are then placed in a solution of brilliant cresyl blue made up with a borate buffer mixture at pH 7.85, a decrease in the rate of penetration of dye is found, without any change in the pH value of the sap. It is assumed that this inhibiting effect is caused by the action of sodium on the protoplasm. This effect is not manifest if the dye solution is made up with phosphate buffer mixture at pH 7.85. It is assumed that this is due to the presence of a greater concentration of base cations in the phosphate buffer mixture. In the case of cells previously exposed to solutions of acetic acid the rate of penetration of dye decreases with the lowering of the pH value of the sap. This inhibiting effect is assumed to be due chiefly to the action of acetic acid on the protoplasm, provided the pH value of the external acetic acid is not so low as to involve an inhibiting effect on the protoplasm by hydrogen ions as well. It is assumed that the acetic acid either has a specific effect on the protoplasm or enters as undissociated molecules and by subsequent dissociation lowers the pH value of the protoplasm. With acetate buffer mixture the inhibiting effect is due to the action of sodium and acetic acid on the protoplasm. The inhibiting effect of acetic acid and acetate buffer mixture is manifested whether the dye solution is made up with borate or phosphate buffer mixture at pH 7.85. It is assumed that acetic acid in the vacuole serves as a reservoir so that during the experiment the inhibiting effect still persists.


1927 ◽  
Vol 11 (2) ◽  
pp. 123-139 ◽  
Author(s):  
Marian Irwin

When living cells of Nitella are first exposed to (1) phosphate buffer mixture, or (2) phosphoric acid, or (3) hydrochloric acid, or (4) sodium chloride, or (5) sodium borate, and are then placed in a solution of brilliant cresyl blue made up with a borate buffer mixture at pH 7.85, the rate of penetration of the dye into the vacuole is decreased as compared with the rate in the case of cells transferred directly from tap water to the same dye solution. When cells exposed to any one of these solutions are placed in the dye solution made up with phosphate buffer solution at pH 7.85, the rate of penetration of dye into the vacuole is the same as the rate in the case of cells transferred from the tap water to the same dye solution. It is probable that this removal of the inhibiting effect is due primarily to the presence of certain concentration of sodium and potassium ions in the phosphate buffer solution. If a sufficient concentration of sodium ions is added to the dye made up with a borate buffer mixture the inhibiting effect is removed just as it is in the case of the dye made up with the phosphate buffer mixture. The inhibiting effect of some of these substances is found to be removed by the dye containing a sufficient concentration of bivalent cations, or by washing the cells with salts of bivalent cations. The inhibiting effect and its removal are discussed from a theoretical standpoint.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

It has been assumed by many involved in freeze-etch or freeze-fracture studies that it would be useless to etch specimens which were cryoprotected by more than 15% glycerol. We presumed that the amount of cryoprotective material exposed at the surface would serve as a contaminating layer and prevent the visualization of fine details. Recent unexpected freeze-etch results indicated that it would be useful to compare complementary replicas in which one-half of the frozen-fractured specimen would be shadowed and replicated immediately after fracturing whereas the complement would be etched at -98°C for 1 to 10 minutes before being shadowed and replicated.Standard complementary replica holders (Steere, 1973) with hinges removed were used for this study. Specimens consisting of unfixed virus-infected plant tissue infiltrated with 0.05 M phosphate buffer or distilled water were used without cryoprotectant. Some were permitted to settle through gradients to the desired concentrations of different cryoprotectants.


Author(s):  
Ronald H. Bradley ◽  
R. S. Berk ◽  
L. D. Hazlett

The nude mouse is a hairless mutant (homozygous for the mutation nude, nu/nu), which is born lacking a thymus and possesses a severe defect in cellular immunity. Spontaneous unilateral cataractous lesions were noted (during ocular examination using a stereomicroscope at 40X) in 14 of a series of 60 animals (20%). This transmission and scanning microscopic study characterizes the morphology of this cataract and contrasts these data with normal nude mouse lens.All animals were sacrificed by an ether overdose. Eyes were enucleated and immersed in a mixed fixative (1% osmium tetroxide and 6% glutaraldehyde in Sorenson's phosphate buffer pH 7.4 at 0-4°C) for 3 hours, dehydrated in graded ethanols and embedded in Epon-Araldite for transmission microscopy. Specimens for scanning electron microscopy were fixed similarly, dehydrated in graded ethanols, then to graded changes of Freon 113 and ethanol to 100% Freon 113 and critically point dried in a Bomar critical point dryer using Freon 13 as the transition fluid.


Author(s):  
William P. Jollie

A technique has been developed for visualizing antibody against horseradish peroxidase (HRP) in rat visceral yolk sac, the placental membrane across which passive immunity previously has been shown to be transferred from mother to young just prior to birth. Female rats were immunized by injecting both hind foot pads with 1 mg HRP emulsified in complete Freund's adjuvant. They were given a booster of 0.5mg HRP in 0.1 ml normal saline i.v. after one week, then bred and autopsied at selected stages of pregnancy, viz., 12, 1 7 and 22 days post coitum, receiving a second booster, injected as above, five days before autopsy. Yolk sacs were removed surgically and fixed immediately in 2% paraformaldehye, 1% glutaraldehye in 0.1 M phosphate buffer with 0.01% CaCl2 at pH 7.4, room temperature, for 3 hr, rinsed 3X in 0.1 M phosphate buffer plus 5% sucrose, then exposed to 1 mg HRP in 1 ml 0.1 M phosphate buffer at pH 7.4 for 1 hr. They were refixed in aldehydes, as above, for 1 5 min (to assure binding of antigen-antibody complex). Following buffer washes, the tissues were incubated in 3 mg diaminobenzidine tetrahydrochloride and 0.01% H2O2 in 0.05 M Tris-HCl buffer for 30 min. After brief buffer washes, they were postfixed in 2% OsO4. in phosphate buffer at pH 7.4, 4°C for 2 hr, dehydrated through a graded series of ethanols, and embedded in Durcupan. Thin sections were observed and photographed without contrast-enhancement with heavy metals. Cytochemical reaction product marked the site of HRP (i.e., antigen) which, in turn, was present only where it was bound with anti-HRP antibody.


Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


Author(s):  
John R. Rowley

The morphology of the exine of many pollen grains, at the time of flowering, is such that one can suppose that transport of substances through the exine occurred during pollen development. Holes or channels, microscopic to submicroscopic, are described for a large number of grains. An inner part of the exine of Epilobium angustifolium L. and E. montanum L., which may be referred to as the endexine, has irregularly shaped channels early in pollen development although by microspore mitosis there is no indication of such channeling in chemically fixed material. The nucleus in microspores used in the experiment reported here was in prophase of microspore mitosis and the endexine, while lamellated in untreated grains, did not contain irregularly shaped channels. Untreated material from the same part of the inflorescence as iron treated stamens was examined following fixation with 0.1M glutaraldehyde in cacodylate-HCl buffer at pH 6.9 (315 milliosmoles) for 24 hrs, 4% formaldehyde in phosphate buffer at pH 7.2 (1,300 milliosmoles) for 12 hrs, 1% glutaraldehyde mixed with 0.1% osmium tetroxide for 20 min, osmium tetroxide in deionized water for 2 hrs and 1% glutaraldehyde mixed with 4% formaldehyde in 0.1M cacodylate-HCl buffer at pH 6.9 for two hrs.


Author(s):  
J. P. Robinson ◽  
P. G. Lenhert

Crystallographic studies of rabbit Fc using X-ray diffraction patterns were recently reported. The unit cell constants were reported to be a = 69. 2 A°, b = 73. 1 A°, c = 60. 6 A°, B = 104° 30', space group P21, monoclinic, volume of asymmetric unit V = 148, 000 A°3. The molecular weight of the fragment was determined to be 55, 000 ± 2000 which is in agreement with earlier determinations by other methods.Fc crystals were formed in water or dilute phosphate buffer at neutral pH. The resulting crystal was a flat plate as previously described. Preparations of small crystals were negatively stained by mixing the suspension with equal volumes of 2% silicotungstate at neutral pH. A drop of the mixture was placed on a carbon coated grid and allowed to stand for a few minutes. The excess liquid was removed and the grid was immediately put in the microscope.


Sign in / Sign up

Export Citation Format

Share Document