Thermal and catalytic pyrolysis of vacuum gas oil using HZSM-5: TG and PY-CG/MS study

2016 ◽  
Vol 34 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Aruzza Mabel de Morais Araújo ◽  
Aneliése Lunguinho Figueiredo ◽  
Amanda Duarte Gondim ◽  
Ana Paula de Melo Alves Guedes ◽  
Luiz Di Souza ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 187
Author(s):  
Meirong Shi ◽  
Xin Zhao ◽  
Qi Wang ◽  
Le Wu

The co-cracking of vacuum gas oil (VGO) and bio-oil has been proposed to add renewable carbon into the co-processing products. However, the environmental performance of the co-processing scheme is still unclear. In this paper, the environmental impacts of the co-processing scheme are calculated by the end-point method Eco-indicator 99 based on the data from actual industrial operations and reports. Three scenarios, namely fast pyrolysis scenario, catalytic pyrolysis scenario and pure VGO scenario, for two cases with different FCC capacities and bio-oil co-processing ratios are proposed to present a comprehensive comparison on the environmental impacts of the co-processing scheme. In Case 1, the total environmental impact for the fast pyrolysis scenario is 1.14% less than that for the catalytic pyrolysis scenario while it is only 26.1% of the total impacts of the pure VGO scenario. In Case 2, the environmental impact of the fast pyrolysis scenario is 0.07% more than that of the catalytic pyrolysis and only 64.4% of the pure VGO scenario impacts. Therefore, the environmental impacts can be dramatically reduced by adding bio-oil as the FCC co-feed oil, and the optimal bio-oil production technology is strongly affected by FCC capacity and bio-oil co-processing ratio.


2021 ◽  
Vol 625 (3) ◽  
pp. 21-24
Author(s):  
R. G. Khasanov ◽  
◽  
T. V. Alushkina ◽  
M. V. Klykov ◽  
◽  
...  

Studies of thermal and catalytic pyrolysis of vacuum gas oil in a flow-type reactor have been carried out. The main regularities in the yield of the target products of the process – ethylene, propylene and butylenes – are revealed. The influence of the catalyst on the change in the conditions of catalytic pyrolysis in comparison with thermal pyrolysis is described. A mathematical model of the process is proposed.


Author(s):  
R. G. Khasanov ◽  
T. V. Alushkina ◽  
M. V. Klykov

Author(s):  
M I Farakhov ◽  
A G Laptev ◽  
T M Farakhov ◽  
A A Akhmitshin
Keyword(s):  

Author(s):  
Tareq A. Al-Attas ◽  
Rahima A. Lucky ◽  
Mohammed Mozahar Hossain
Keyword(s):  
Gas Oil ◽  

Author(s):  
Anton Alvarez-Majmutov ◽  
Sandeep Badoga ◽  
Jinwen Chen ◽  
Jacques Monnier ◽  
Yi Zhang
Keyword(s):  
Gas Oil ◽  

2013 ◽  
Vol 27 (6) ◽  
pp. 3306-3315 ◽  
Author(s):  
Jinwen Chen ◽  
Hena Farooqi ◽  
Craig Fairbridge

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4122
Author(s):  
Sarah A. Alkhalaf ◽  
Ahmed R. Ramadan ◽  
Christian Obuekwe ◽  
Ashraf M. El Nayal ◽  
Nasser Abotalib ◽  
...  

We followed a comparative approach to investigate how heavy vacuum gas oil (HVGO) affects the expression of genes involved in biosurfactants biosynthesis and the composition of the rhamnolipid congeners in Pseudomonas sp. AK6U. HVGO stimulated biosurfactants production as indicated by the lower surface tension (26 mN/m) and higher yield (7.8 g/L) compared to a glucose culture (49.7 mN/m, 0.305 g/L). Quantitative real-time PCR showed that the biosurfactants production genes rhlA and rhlB were strongly upregulated in the HVGO culture during the early and late exponential growth phases. To the contrary, the rhamnose biosynthesis genes algC, rmlA and rmlC were downregulated in the HVGO culture. Genes of the quorum sensing systems which regulate biosurfactants biosynthesis exhibited a hierarchical expression profile. The lasI gene was strongly upregulated (20-fold) in the HVGO culture during the early log phase, whereas both rhlI and pqsE were upregulated during the late log phase. Rhamnolipid congener analysis using high-performance liquid chromatography-mass spectrometry revealed a much higher proportion (up to 69%) of the high-molecularweight homologue Rha–Rha–C10–C10 in the HVGO culture. The results shed light on the temporal and carbon source-mediated shifts in rhamonlipids’ composition and regulation of biosynthesis which can be potentially exploited to produce different rhamnolipid formulations tailored for specific applications.


Energy ◽  
2021 ◽  
pp. 122912
Author(s):  
Shuai Zhang ◽  
Qingyu Lei ◽  
Le Wu ◽  
Yuqi Wang ◽  
Lan Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document