Effects of solid mass and size on gas holdup and oxygen mass transfer coefficient of a three‐phase air‐lift reactor

Author(s):  
K.S. Ro ◽  
M.K. Singh
Author(s):  
K.V. Shetty ◽  
G. Srinikethan

Volumetric oxygen mass transfer coefficient is a decisive parameter for the selection of any contactor as an aerobic bioreactor. A pulsed plate column with fixed bed of solids in interplate spaces is a recent innovation in the field of immobilized cell bioreactors. Volumetric oxygen mass transfer coefficients are determined in a three-phase pulsed plate column involving air and water phases and with a fixed bed of glass particles, which can serve as a surface for cell immobilization packed in the interplate spaces. The volumetric mass transfer coefficients obtained in this column range from 0.067 to 0.1495 s-1 in the range of air superficial velocities from 0.011 to 0.047m/s and vibrational velocities from 0.825 to 6cm/s. Volumetric oxygen mass transfer coefficient has increased with the increase in superficial air velocity and vibrational velocity. Empirical correlation relating kLa with these variables was developed. The volumetric oxygen mass transfer coefficient values in the three-phase pulsed plate column are found to be similar or higher than the literature reported values for conventional two-phase pulsed plate columns. The values of volumetric oxygen mass transfer coefficients in the three-phase pulsed plate column are of higher order of magnitude than the literature reported values of volumetric oxygen mass transfer coefficient for many other three-phase gas-liquid-solid reactors. The pulsed plate column with fixed bed of solids is proven to have all the potential to be used as an aerobic bioreactor with immobilized cells due to its better gas-liquid mass transfer characteristics.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4329
Author(s):  
Radek Šulc ◽  
Jan Dymák

The gas–liquid hydrodynamics and mass transfer were studied in a concentric tube internal jet-loop airlift reactor with a conical bottom. Comparing with a standard design, the gas separator was equipped with an adjustable deflector placed above the riser. The effect of riser superficial gas velocity uSGR on the total gas holdup εGT, homogenization time tH, and overall volumetric liquid-phase mass transfer coefficient kLa was investigated in a laboratory bioreactor, of 300 mm in inner diameter, in a two-phase air–water system and three-phase air–water–PVC–particle system with the volumetric solid fraction of 1% for various deflector clearances. The airlift was operated in the range of riser superficial gas velocity from 0.011 to 0.045 m/s. For the gas–liquid system, when reducing the deflector clearance, the total gas holdup decreased, the homogenization time increased twice compared to the highest deflector clearance tested, and the overall volumetric mass transfer coefficient slightly increased by 10–17%. The presence of a solid phase shortened the homogenization time, especially for lower uSGR and deflector clearance, and reduced the mass transfer coefficient by 15–35%. Compared to the gas–liquid system, the noticeable effect of deflector clearance was found for the kLa coefficient, which was found approx. 20–29% higher for the lowest tested deflector clearance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Chaoyue ◽  
Feng Shiyu ◽  
Xu Lei ◽  
Peng Xiaotian ◽  
Yan Yan

AbstractDissolved oxygen evolving from aviation fuel leads to an increase in the oxygen concentration in an inert aircraft fuel tank ullage that may increase the flammability of the tank. Aviation fuel scrubbing with nitrogen-enriched air (NEA) can largely reduce the amount of dissolved oxygen and counteract the adverse effect of oxygen evolution. The gas–liquid mass transfer characteristics of aviation fuel scrubbing are investigated using the computational fluid dynamics method, which is verified experimentally. The effects of the NEA bubble diameter, NEA superficial velocity and fuel load on oxygen transfer between NEA and aviation fuel are discussed. Findings from this work indicate that the descent rate of the average dissolved oxygen concentration, gas holdup distribution and volumetric mass transfer coefficient increase with increasing NEA superficial velocity but decrease with increasing bubble diameter and fuel load. When the bubble diameter varies from 1 to 4 mm, the maximum change of descent rate of dissolved oxygen concentration is 18.46%, the gas holdup is 8.73%, the oxygen volumetric mass transfer coefficient is 81.45%. When the NEA superficial velocities varies from 0.04 to 0.10 m/s, the maximum change of descent rate of dissolved oxygen concentration is 146.77%, the gas holdup is 77.14%, the oxygen volumetric mass transfer coefficient is 175.38%. When the fuel load varies from 35 to 80%, the maximum change of descent rate of dissolved oxygen concentration is 21.15%, the gas holdup is 49.54%, the oxygen volumetric mass transfer coefficient is 44.57%. These results provide a better understanding of the gas and liquid mass transfer characteristics of aviation fuel scrubbing in aircraft fuel tanks and can promote the optimal design of fuel scrubbing inerting systems.


Sign in / Sign up

Export Citation Format

Share Document