scholarly journals Rheology of Mung Bean Starch Treated by High Hydrostatic Pressure

2014 ◽  
Vol 18 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Bin Jiang ◽  
Wenhao Li ◽  
Xiaosong Hu ◽  
Jihong Wu ◽  
Qun Shen
2014 ◽  
Vol 10 (2) ◽  
pp. 261-268 ◽  
Author(s):  
Lingwen Zhang ◽  
Hongfang Ji ◽  
Mingduo Yang ◽  
Hanjun Ma

Abstract Influences of mung bean starches treated with different high hydrostatic pressure (HHP) on the properties of batters and crusts from deep-fried pork nuggets were explored. HHP-treated starch increased water retention capacity of batter and consequently the batter pick-up. The increase in pressure at 150–450 MPa could facilitate hydration and swelling of starch granules during gelatinization. The crusts containing HHP-treated starches had higher moisture and less oil content, and the oil content was 15.82 g/100 g dry weight (DW) for 450 MPa treated starch, which was much lower than that of native starch (18.39 g/100 g DW) (p<0.05). Additionally, HHP-treated starches changed the crispness of crusts with increases in the slope and decrease in the shearing distance. Results indicated that mung bean starch treated with HHP in the range of 150–450 MPa could improve the quality of deep-fried battered food.


2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


2010 ◽  
Vol 37 (6) ◽  
pp. 641-645 ◽  
Author(s):  
Can-Xin XU ◽  
Chun WANG ◽  
Bing-Yang ZHU ◽  
Zhi-Ping GAO ◽  
Di-Xian LUO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document