Growth enhancement of Brassica napus under both deficient and adequate iron supply by intercropping with Hordeum vulgare: a hydroponic study

Author(s):  
Noushin Sadeghzadeh ◽  
Roghieh Hajiboland ◽  
Narges Moradtalab ◽  
Charlotte Poschenrieder
1996 ◽  
Vol 10 (4) ◽  
pp. 907-913 ◽  
Author(s):  
Kenneth J. Kirkland

The comparison of incorporation vs no incorporation on a mid-October application of the granular formulation of trifluralin to control infestations of wild oat and green foxtail was evaluated in spring barley, wheat, and canola in west central Saskatchewan over a 3 yr period. Incorporation treatments consisted of: no incorporation, one incorporation in fall, one incorporation in fall and a second in spring, one incorporation in fall and two additional incorporations in spring. All treatments eliminated green foxtail. In all three crops wild oat panicle counts were equivalent from incorporated and non-incorporated trifluralin. Wild oat fresh weights in crops grown on stubble were similar for incorporated and non-incorporated trifluralin. In fallow crops, wild oat fresh weight reductions were greater in three of nine site years with incorporation. There was little difference in crop yields from incorporated and non-incorporated trifluralin.


1978 ◽  
Vol 58 (1) ◽  
pp. 241-248 ◽  
Author(s):  
J. WADDINGTON

Under greenhouse conditions, incorporating ground straw in the soil at rates between 2,240 and 8,970 kg/ha reduced the emergence of alfalfa (Medicago media Pers. cv. Beaver) significantly (P < 0.05) and bromegrass (Bromus inermis Leyss cv. Magna) slightly, but had no effect on barley (Hordeum vulgare L. cv. Conquest). Rape (Brassica napus L. cv. Target and B. campestris L. cv. Echo) straws were more damaging than wheat (Triticum aestivum L. cv. Manitou) straw. Symptoms of severe nitrogen deficiency appeared early in the growth of barley where straw had been added to the soil. The effect on tillering varied. In one experiment tillers were smaller, in one tillers were larger; but in both, total leaf area produced was much less where 8,970 kg/ha of straw had been added to the soil. Bromegrass showed the same effects but to a lesser degree, probably because of slower growth requiring a smaller supply of nitrogen. Alfalfa growth was apparently unaffected. There was no evidence that the straw of either rapeseed species was more deleterious than wheat straw to crop growth after emergence. It is concluded that straw incorporated in soil affected barley and bromegrass growth by reducing the availability of nitrogen.


2003 ◽  
Vol 83 (4) ◽  
pp. 431-441 ◽  
Author(s):  
R. H. McKenzie ◽  
E. Bremer ◽  
L. Kryzanowski ◽  
A. B. Middleton ◽  
E. D. Solberg ◽  
...  

Crop responsiveness to P fertilizers on the Canadian Prairies has likely declined during the past three to four decades due to regular application of P fertilizer and reduced tillage. Its relationship to extractable soil P as determined by various soil tests may also have changed. The objective of this study was to evaluate five soil test P methods for three major crops across a wide range of soil types and environmental conditions. Small-plot P fertilizer trials were conducted at 154 locations across Alberta from 1991 through 1993. At each location, fertilizer responses were determined for one, two, or three crops: barley (Hordeum vulgare L.), spring wheat (Triticum aestivum L.) or canola (Brassica napus L.). Fertilizer treatments consisted of seed-placed monoammonium phosphate at rates of 0, 6.5, 13.1 and 19.6 kg P ha-1. The average increase in seed yield due to application of P fertilizer was 10%, with little difference among crop types. Relative yield increases were significantly greater in Gray soils (Dark Gray Chernozemics, Dark Gray-Gray Luvisols) than in Black (Black Chernozemics) or Brown soi ls (Brown and Dark Brown Chernozemics). The maximum variation in P fertilizer response accounted for by any soil test P was 27% for barley, 15% for wheat and 7% for canola. The Kelowna method and its derivatives generally provided the best fit with P fertilizer response. Only a modest increase in the proportion of variation that could be accounted for by soil test was achieved by multiple regressions with soil pH, clay or organic matter or by separate analyses of different soil types or years. The probability of a profitable yield response due to P fertilizer application did decline with increasing soil test P. However, profitable yield responses were frequent at all levels of soil test P for the first increment of 6.5 kg P ha-1 and low at all levels of soil test P for the third increment of 6.5 kg P ha-1 (19.6 kg P ha-1). The poor relationship of soil test P to fertilizer response was attributed to frequent but variable starter effects of P fertilizer and the infrequent occurrence of highly responsive sites. Key words: Soil testing, Olsen, Bray, Kelowna, fertilizer response functions, Hordeum vulgare, Triticum aestivum, Brassica napus


2022 ◽  
Author(s):  
Lisa Petzoldt ◽  
Bärbel Kroschewski ◽  
Timo Kautz

Abstract Aims Biopores offer favorable chemical, biological and physical properties for root growth in untilled soil layers. There they are considered as nutrient “hotspots” with preferential root growth. However, the literature lacks a quantification of metabolic activity due to nutrient acquisition of main crops while growing in the biopore sheath. Methods A pot experiment was performed to map the metabolic activity of roots, as indicated by pH change. The roots of spring barley (Hordeum vulgare L.), spring oilseed rape (Brassica napus L.) and faba bean (Vicia faba L.) were growing through the biopore sheath influenced by an earthworm (Lumbricus terrestris L.) or a taproot (Cichorium intybus L.), in comparison to subsoil without a pore (bulk soil). pH sensitive planar optodes were applied in order to image a planar section of the sheath, while preserving an intact biopore sheath during the experiment. Results Roots were first found in the field of view in worm biopore then root biopore and bulk soil. At time of the first measurement the pH value was highest in worm biopore sheath (LS-Mean±SEM: 7.16a±0.11), followed by root biopore sheath (6.99ab±0.12) and bulk soil (6.61b±0.12). In spring oilseed rape a significant alkalization (+0.80 Δ pH) was found over time in bulk soil. Faba bean significantly acidified the root biopore sheath (-0.73 Δ pH). Spring barley showed no significant pH changes. Conclusions The results of the current study reveal a trend of faster root growth through biopores and a higher initial pH value in the biopore sheaths compared to the bulk soil. Biopores serve not only as an elongation path for roots, but their sheaths also provide an environment for root activity in the subsoil.


Sign in / Sign up

Export Citation Format

Share Document