scholarly journals Metabolic activity of Hordeum vulgare, Brassica napus and Vicia faba in Worm and Root type Biopore Sheaths

2022 ◽  
Author(s):  
Lisa Petzoldt ◽  
Bärbel Kroschewski ◽  
Timo Kautz

Abstract Aims Biopores offer favorable chemical, biological and physical properties for root growth in untilled soil layers. There they are considered as nutrient “hotspots” with preferential root growth. However, the literature lacks a quantification of metabolic activity due to nutrient acquisition of main crops while growing in the biopore sheath. Methods A pot experiment was performed to map the metabolic activity of roots, as indicated by pH change. The roots of spring barley (Hordeum vulgare L.), spring oilseed rape (Brassica napus L.) and faba bean (Vicia faba L.) were growing through the biopore sheath influenced by an earthworm (Lumbricus terrestris L.) or a taproot (Cichorium intybus L.), in comparison to subsoil without a pore (bulk soil). pH sensitive planar optodes were applied in order to image a planar section of the sheath, while preserving an intact biopore sheath during the experiment. Results Roots were first found in the field of view in worm biopore then root biopore and bulk soil. At time of the first measurement the pH value was highest in worm biopore sheath (LS-Mean±SEM: 7.16a±0.11), followed by root biopore sheath (6.99ab±0.12) and bulk soil (6.61b±0.12). In spring oilseed rape a significant alkalization (+0.80 Δ pH) was found over time in bulk soil. Faba bean significantly acidified the root biopore sheath (-0.73 Δ pH). Spring barley showed no significant pH changes. Conclusions The results of the current study reveal a trend of faster root growth through biopores and a higher initial pH value in the biopore sheaths compared to the bulk soil. Biopores serve not only as an elongation path for roots, but their sheaths also provide an environment for root activity in the subsoil.

Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Lisa Petzoldt ◽  
Timo Kautz

Root growth through biopores is facilitated by low mechanical impedance and nutrient enrichment due to the deposition of organic material at the biopore sheath. Plant roots and earthworms impact biopore sheath properties differently. However, the literature lacks a quantitative study of the root distribution within the sheath of pores, which were originated by taproots or earthworms. According to previous literature on pore connectivity, it can be hypothesized that precrops encourage root growth into the biopore sheath in comparison to an earthworm characterized sheath. A pot experiment was performed to compare the root distribution of spring oilseed rape (Brassica napus L.) and faba bean (Vicia faba L.) within the biopore sheath of two different biopore types. The biopore sheath was characterized by taprooted chicory (Cichorium intybus L.) or anecic earthworm (Lumbricus terrestris L.). Roots were sampled at the biopore lumen and at lateral distances of 0–2, 2–4, 4–8 (sheath) and 20–36 mm (bulk soil) from the biopore wall surface. In both pore types >50% of the root length (cm) and >70% fine roots of oilseed rape were found in a comparatively small soil area (Lumen + 2 mm). On the contrary, faba bean grew primarily through the bulk soil with >75% root length and rarely into the biopore sheath in both pore types. In both species there was a lateral decrease of the total nitrogen (Nt)-content from biopore wall (Mean ± SE: 0.061% ± 0.002%) to bulk soil (0.053% ± 0.002%), but no significant difference between the pore types. The results of the current study illustrate that the root growth of spring oilseed rape and faba bean was not encouraged by the precrop in comparison to the earthworm characterized sheath.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 650
Author(s):  
Lisa Petzoldt ◽  
Miriam Athmann ◽  
Andreas Buechse ◽  
Timo Kautz

Biopores provide nutrients from root debris and earthworm casts. Inside large biopores, root function is limited due to the lack of root–soil contact. However, the immediate surroundings of biopores may hold a key function as “hotspots” for root growth in the subsoil. To date, sufficient quantitative information on the distribution of roots and nutrients around biopores is missing. In this field study, the biopore sheath was sampled at distances of 0–2, 2–4, 4–8, and 8–12 mm from the surface of the pore wall. The results show a laterally decreasing gradient from the pore towards 8–12 mm distance in root length density (RLD) of spring barley (Hordeum vulgare L.) and faba bean (Vicia faba L.), as well as in total nitrogen (Nt)- and total carbon (Ct)-content. In the biopore sheath (2–12 mm), the share of roots with a diameter of less than 0.4 mm was 92% for barley and 89% for faba bean. The findings support the view that roots can utilize biopores to gain access to deeper soil layers and may use the sheath for nutrient uptake and entrance through to the bulk soil. However, especially for barley, the inner layer of the biopore sheath appeared to be more important for root growth than the sheath of farer distance.


PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0193669 ◽  
Author(s):  
Sebastian R. G. A. Blaser ◽  
Steffen Schlüter ◽  
Doris Vetterlein

1996 ◽  
Vol 10 (4) ◽  
pp. 907-913 ◽  
Author(s):  
Kenneth J. Kirkland

The comparison of incorporation vs no incorporation on a mid-October application of the granular formulation of trifluralin to control infestations of wild oat and green foxtail was evaluated in spring barley, wheat, and canola in west central Saskatchewan over a 3 yr period. Incorporation treatments consisted of: no incorporation, one incorporation in fall, one incorporation in fall and a second in spring, one incorporation in fall and two additional incorporations in spring. All treatments eliminated green foxtail. In all three crops wild oat panicle counts were equivalent from incorporated and non-incorporated trifluralin. Wild oat fresh weights in crops grown on stubble were similar for incorporated and non-incorporated trifluralin. In fallow crops, wild oat fresh weight reductions were greater in three of nine site years with incorporation. There was little difference in crop yields from incorporated and non-incorporated trifluralin.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sebastian R. G. A. Blaser ◽  
Nicolai Koebernick ◽  
Oliver Spott ◽  
Enrico Thiel ◽  
Doris Vetterlein

Abstract Root growth responds to local differences in N-form and concentration. This is known for artificial systems and assumed to be valid in soil. The purpose of this study is to challenge this assumption for soil mesocosms locally supplied with urea with and without nitrification inhibitor. Soil column experiments with Vicia faba (‘Fuego’) and Hordeum vulgare (‘Marthe’) were performed to investigate soil solution chemistry and root growth response of these two species with contrasting root architectures to the different N-supply simultaneously. Root growth was analysed over time and separately for the fertiliser layer and the areas above and below with X-ray CT (via region growing) and WinRHIZO. Additionally, NO3− and NH4+ in soil and soil solution were analysed. In Vicia faba, no pronounced differences were observed, although CT analysis indicated different root soil exploration for high NH4+. In Hordeum vulgare, high NO3− inhibited lateral root growth while high NH4+ stimulated the formation of first order laterals. The growth response to locally distributed N-forms in soil is species specific and less pronounced than in artificial systems. The combination of soil solution studies and non-invasive imaging of root growth can substantially improve the mechanistic understanding of root responses to different N-forms in soil.


1988 ◽  
Vol 68 (2) ◽  
pp. 425-432 ◽  
Author(s):  
Y. K. SOON

A field study was conducted in 1984 and 1985 to determine the spatial distribution with time of root length density of spring barley (Hordeum vulgare L.) growing in a Black Solod in northwestern Alberta. The weakly solonetzic Bnt horizon present in the solodic soil appeared not to inhibit root growth, and roots were present to 90 cm depth of soil. Drought in 1985 reduced root growth in general, and in particular in the surface soil (0 – 15 cm depth) between crop rows. Root growth in both years continued well after ear emergence and attained a maximum total length (14.5 and 9.5 km m−2 in 1984 and 1985, respectively) some time into grain-filling. Water uptake rates of up to 1.3 cm3 m−1 d−1 were observed; this maximum rate was associated with younger roots in the 60- to 90-cm depth in 1984. Low availability of subsoil water in 1985, however, resulted in low root density and water uptake rates in the 60- to 90-cm depth. The weighted mean uptake rate for the entire root system was slightly more than 0.4 cm3 m−1 d−1 in 1984 and about half that in 1985. Key words: Barley, Hordeum vulgare L., solonetzic soil, water inflow, root growth, root length density


Sign in / Sign up

Export Citation Format

Share Document