Females invest more energy in flight: flight characteristics of Platypus quercivorus (Murayama) revealed by a flight mill

2021 ◽  
pp. 1-9
Author(s):  
Duy Long Pham ◽  
Yasuto Ito ◽  
Ryuichi Okada ◽  
Hidetoshi Ikeno ◽  
Michimasa Yamasaki
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2112
Author(s):  
Maged Mohammed ◽  
Hamadttu El-Shafie ◽  
Nashi Alqahtani

Understanding the flight characteristics of insect pests is essential for designing effective strategies and programs for their management. In this study, we designed, constructed, and validated the performance of modern flight-testing systems (flight mill and flight tunnel) for studying the flight behavior of red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) under a controlled atmosphere. The flight-testing mill consisted of a flight mill, a testing chamber with an automatically controlled microclimate, and a data logging and processing unit. The data logging and processing unit consisted of a USB digital oscilloscope connected with a laptop. We used MATLAB 2020A to implement a graphical user interface (GUI) for real-time sampling and data processing. The flight-testing tunnel was fitted with a horizontal video camera to photograph the insects during flight. The program of Image-Pro plus V 10.0.8 was used for image processing and numerical data analysis to determine weevil tracking. The mean flight speed of RPW was 82.12 ± 8.5 m/min, and the RPW stopped flying at the temperature of 20 °C. The RPW flight speed in the flight tunnel was slightly higher than that on the flight mill. The angular deceleration was 0.797 rad/s2, and the centripetal force was 0.0203 N when a RPW tethered to the end of the rotating arm. The calculated moment of inertia of the RPW mass and the flight mill's rotating components was 9.521 × 10−3 N m2. The minimum thrust force needed to rotate the flight mill was 1.98 × 10−3 N. Therefore, the minimum power required to rotate the flight mill with the mean revolution per min of 58.02 rpm was approximately 2.589 × 10−3 W. The designed flight-testing systems and their applied software proved productive and useful tools in unveiling essential flight characteristics of test insects in the laboratory.


Nematology ◽  
2021 ◽  
pp. 1-21
Author(s):  
Natsumi Kanzaki ◽  
Hayato Masuya ◽  
Keiko Hamaguchi

Summary Two new Neomisticius species, typologically and phylogenetically close to each other, are described and illustrated from dead Quercus trees and an ambrosia beetle, Platypus quercivorus. The two species share some stylet morphological characteristics, namely, they both possess a long conus occupying more than half of the total stylet length, a long crustaformeria composed of more than 160 cells (eight rows of more than 20 cells each), and a short and broad female tail with a digitate tip. They are distinguished from each other by N. variabilis n. sp. having a wide, spindle-shaped male bursa with a blunt terminus and N. platypi n. sp. having an oval bursa with a rounded terminus. In addition, the males and females of both species have three large rectal glands and the posterior end of the male testis (distal end of the vas deferens) bears three cells that seemingly function as a valve between the vas deferens and the cloacal tube. These characteristics have not been reported in other tylenchids. Currently, the genus contains only three species: the two new species and N. rhizomorphoides, which has a normal stylet with a short conus, a short crustaformeria, and lacks rectal glands and valve cells in the vas deferens. Therefore, the two new species are readily distinguished from N. rhizomorphoides and, based on the previous definition, may even represent a new genus. However, considering their phylogenetic closeness and biological similarities (e.g., association with ambrosia beetles), the generic definition of Neomisticius was emended to include these new species.


2002 ◽  
Vol 92 (2) ◽  
pp. 119-126 ◽  
Author(s):  
N. Kamata ◽  
K. Esaki ◽  
K. Kato ◽  
Y. Igeta ◽  
K. Wada

AbstractDeciduous oak dieback in Japan has been known since the 1930s, but in the last ten years epidemics have intensified and spread to the island’s western coastal areas. The symbiotic ambrosia fungus Raffaelea sp. is the causal agent of oak dieback, and is vectored by Platypus quercivorus (Murayama). This is the first example of an ambrosia beetle fungus that kills vigorous trees. Mortality of Quercus crispula was approximately 40% but much lower for associated species of Fagaceae, even though each species had a similar number of beetle attacks. It is likely that other oaks resistant to the fungus evolved under a stable relationship between the tree, fungus and beetle during a long evolutionary process. Quercus crispula was probably not part of this coevolution. This hypothesis was supported by the fact that P. quercivorus showed the least preference for Q. crispulayet exhibited highest reproductive success in this species. Therefore, P. quercivorus could spread more rapidly in stands with a high composition of Q. crispula. The present oak dieback epidemic in Japan probably resulted from the warmer climate that occurred from the late 1980s which made possible the fateful encounter of P. quercivorus with Q. cripsula by allowing the beetle to extend its distribution to more northerly latitudes and higher altitudes. Future global warming will possibly accelerate the overlapping of the distributions of P. quercivorus and Q. crispula with the result that oak dieback in Q. crispula will become more prevalent in Japan.


2000 ◽  
Vol 44 (3) ◽  
pp. 189-196 ◽  
Author(s):  
Koichi Soné ◽  
Kazuki Uto ◽  
Shusaku Fukuyama ◽  
Takeshi Nagano

2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Tomoya Takano ◽  
Takuya Koseki ◽  
Hiromasa Koyama ◽  
Yoshihito Shiono

Japanese oak wilt (JOW) is a tree disease caused by the fungus Raffaelea quercivora, which is vectored by the ambrosia beetle, Platypus quercivorus. In a screening study of the inhibitory active compounds from fungi, a new cytosporone analogue, compound 1, was isolated from the endophytic fungus Cytospora sp. TT-10 isolated from Japanese oak, together with the known compounds, integracin A (2), cytosporones N (3) and A (4). Their structures were determined by extensive 1D– and 2D–NMR spectroscopic and mass spectral analyses. Compound 1 was identified as 4,5-dihydroxy-3-heptylphthalide and named cytosporone E. Compounds 2 and 3 showed antimicrobial activity against Raffaelea quercivora.


2020 ◽  
Vol 168 (12) ◽  
pp. 928-939
Author(s):  
Duy Long Pham ◽  
Yasuto Ito ◽  
Ryuichi Okada ◽  
Hidetoshi Ikeno ◽  
Haruna Kazama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document