scholarly journals EXPERIMENTAL AND NUMERICAL STUDIES ON THE FLEXURAL BEHAVIOR OF FIBRE REINFORCED CONCRETE BEAMS WITH INNOVATIVE HYBRID FRP-WRAPPED STEEL BARS

Author(s):  
Sivaramakrishnan Subbaram ◽  
Chinnaraju Komarasamy
Author(s):  
Rendy Thamrin ◽  
Zaidir Zaidir ◽  
Devitasari Iwanda

An experimental study was carried out to evaluate the ductility of reinforced concrete beams longitudinally reinforced with hybrid FRP-Steel bars. The specimens were fourteen reinforced concrete beams with and without hybrid reinforcement. The test variables were bars position, the ratio of longitudinal reinforcement, and the type of FRP bars. The beams were loaded up to failure using a four-point bending test. The performance of the tested beams was observed using the load-deflection curve obtained from the test. Numerical analysis using the fiber element model was used to examine the growth of neutral axis depth due to the effect of test variables. The neutral axis curves were then used to further estimate the neutral axis angle and neutral axis displacement index. The test results show that the position of the reinforcement greatly influences the flexural behavior of the beam with hybrid reinforcement. It was observed from the test that the flexural capacity of beams with hybrid reinforcement is 4% to 50% higher than that of the beams with conventional steel bars depending on bars position and the ratio of longitudinal reinforcement. The ductility decreases as the hybrid reinforcement ratio (Af/As) increases. This study also showed that a numerical model developed can predict the flexural behavior of beams with hybrid reinforcement with reasonable accuracy.


2016 ◽  
Vol 845 ◽  
pp. 132-139
Author(s):  
Mochamad Teguh ◽  
Novia Mahlisani

The limited lengths of reinforcing bars have been commonly found in the practical construction of most reinforced concrete structures. The required length of a bar may be longer than the available stock of steel length. For maintaining desired continuity of the reinforcement in almost all reinforced concrete structures, some reinforcing bars should be carefully spliced. In the case of long flexural beam, bar installers end up with two or even more pieces of steel that must be spliced together to accomplish the desired steel length. An experimental study was conducted to investigate flexural behavior of reinforced concrete beams utilizing a variety lap splices of reinforcing steel bars under two-point loading. Five variations of lap splices of reinforcing steel bars positioned at midspan of tensile reinforcement of the beam were investigated. Welded joints and overlapped splices were used to construct the variation of lap splices of reinforcing steel bars. The general trend in crack pattern, the load deflection characteristics and the mode of failure of flexural beams under two-point loading were also observed. The flexural strength comprising load-displacement response, flexural crack propagation, displacement ductility is briefly discussed in this paper.


In this paper, the flexural behavior of hybrid fibre reinforced concrete beams was investigated. Two types of hybrid fibres were used. used in this study, one is having high young’s modulus steel fibre (Hooked end) and another one is having low young’s modulus Polypropylene fibre with different proportions. Nine types of reinforced concrete beams were made by using M50 grade high strength concrete mix a volume factors of hybrid fibres as 1.5%. this beams includes conventional concrete, LC3 concrete and he beam with the following combinations of hybrid fibres such as OPC 100%, LC3 100%, SF100%, SF25% -PF75%, SF40%-PF60%, SF50%-PF50%, SF60%-PF40%, SF75%-PF25 %, PF100%, the working results shows that percentage proportion of combined SF-PF at 75%-25% had the best implementation on its flexural strength. Experimental results also shows that beam with SF75%-PF25% had their structural stiffness, ductility index and energy absorption capacity have been improved the most as compared with the conventional concrete and other fibre combinations of beams.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3255 ◽  
Author(s):  
Fang Yuan ◽  
Mengcheng Chen

Fibre-reinforced polymer (FRP)-reinforced concrete members exhibit low ductility due to the linear-elastic behaviour of FRP materials. Concrete members reinforced by hybrid FRP–steel bars can improve strength and ductility simultaneously. In this study, the plastic hinge problem of hybrid FRP–steel reinforced concrete beams was numerically assessed through finite element analysis (FEA). Firstly, a finite element model was proposed to validate the numerical method by comparing the simulation results with the test results. Then, three plastic hinge regions—the rebar yielding zone, concrete crushing zone, and curvature localisation zone—of the hybrid reinforced concrete beams were analysed in detail. Finally, the effects of the main parameters, including the beam aspect ratio, concrete grade, steel yield strength, steel reinforcement ratio, steel hardening modulus, and FRP elastic modulus on the lengths of the three plastic zones, were systematically evaluated through parametric studies. It is determined that the hybrid reinforcement ratio exerts a significant effect on the plastic hinge lengths. The larger the hybrid reinforcement ratio, the larger is the extent of the rebar yielding zone and curvature localisation zone. It is also determined that the beam aspect ratio, concrete compressive strength, and steel hardening ratio exert significant positive effects on the length of the rebar yielding zone.


2012 ◽  
Vol 535-537 ◽  
pp. 1803-1806
Author(s):  
Shun Bo Zhao ◽  
Peng Bing Hou ◽  
Fu Lai Qu

An experimental study was carried out to examine the non-uniform corrosion of plain steel bars in reinforced concrete beams partially placed in 5% sodium chloride solution under conditions of accelerated corrosion. 4 reinforced concrete beams with different concrete strength were made. The crack distributions of the beams due to pre-loads and expansion of corrosion product, and the sectional corrosion characteristics of plain steel bars are described in detail. The sectional area loss relating to mass loss and change along pure bending length of the beams are discussed. These can be used as the basis of test for further studies to build the numerical models of serviceability of corroded reinforced concrete beams.


Sign in / Sign up

Export Citation Format

Share Document