High rate failure properties of porcine aortic tissue under uniaxial tension

Author(s):  
Piyush Gaur ◽  
Sanyam Sharma ◽  
Devendra Kumar ◽  
Anoop Chawla ◽  
Sudipto Mukherjee ◽  
...  
Author(s):  
Piyush Gaur ◽  
Khyati Verma ◽  
Anoop Chawla ◽  
Sudipto Mukherjee ◽  
Sanjeev Lalwani ◽  
...  

Author(s):  
Ravi Kiran Chitteti ◽  
Pronoy Ghosh ◽  
Christian Mayer ◽  
Sudipto Mukherjee ◽  
Sanjeev Lalwani ◽  
...  

Author(s):  
Shijia Zhao ◽  
John Lof ◽  
Shelby Kutty ◽  
Linxia Gu

Aortic allografts have been widely used in treatments of congenital heart diseases with satisfactory clinical outcomes. They were usually cryopreserved and stored for surgical use. The objective of this work was to investigate the effect of cold storage on mechanical properties of aorta, since the compliance mismatch was one important factor associated with the complication after graft surgery. The segments of porcine descending aorta were divided into two groups: the fresh samples which were tested within 24 hours after harvesting served as control group, and frozen samples which were stored in −20°C for 7 days and then thawed. The uniaxial tension tests along circumferential direction and indentation tests were conducted. The average incremental elastic moduli within each stretch range were obtained from the experimental data obtained during tension tests, and the elastic moduli were also calculated by fitting the force-indentation depth data to Hertz model when the tissue was stretched at 1.0, 1.2, 1.4 and 1.6. In addition, the average incremental elastic moduli of both fresh and frozen aortic tissue along axial direction were also obtained by using uniaxial tension tests. The comparison showed that cold storage definitely increased the average incremental elastic modulus of the aortic tissue along circumferential direction; however, the difference is not significant for the elastic moduli along axial direction.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 659 ◽  
Author(s):  
Bin Zhang ◽  
Jin Wang ◽  
Yang Wang ◽  
Yu Wang ◽  
Ziran Li

This study is an experimental investigation on the tensile responses of Ti–5Al–2.5Sn alloy over a wide range of strain rates. Uniaxial tension tests within the rate range of 10−3–101 s−1 are performed using a hydraulic driven MTS810 machine and a moderate strain-rate testing system. The high-rate uniaxial tension and tension recovery tests are conducted using a split-Hopkinson tension bar to obtain the adiabatic and isothermal stress–strain responses of the alloy under dynamic loading conditions. The experimental results show that the value of the initial yield stress increases with the increasing strain rate, while the strain rate sensitivity is greater at high strain rates. The isothermal strain-hardening behavior changes little with the strain rate, and the adiabatic temperature rise is the main reason for the reduction of the strain-hardening rate during high strain-rate tension. The electron backscatter diffraction (EBSD) analysis of the post-deformed samples indicates that there are deformation twins under quasi-static and high-rate tensile loadings. Scanning electron microscope (SEM) micrographs of the fracture surfaces of the post-deformed samples show dimple-like features. The Zerilli–Armstrong model is modified to incorporate the thermal-softening effect of the adiabatic temperature rise at high strain rates and describe the tension responses of Ti–5Al–2.5Sn alloy over strain rates from quasi-static to 1050 s−1.


Author(s):  
Meghan K. Howes ◽  
Warren N. Hardy

Risk of serious abdominal injury in motor vehicle collisions (MVCs) is substantially reduced with the proper use of seatbelts [1]. However, a significant increase in occurrence of gastrointestinal tract injury exists with belt loading [2]. Crash-induced injuries of the stomach that occur in MVCs include gastric rupture and laceration [3]. To characterize the biomechanical response of the stomach associated with these failure modes, the multidirectional failure properties of cruciate tissue samples were investigated with high-rate biaxial stretch.


Author(s):  
L. E. Murr ◽  
G. Wong

Palladium single-crystal films have been prepared by Matthews in ultra-high vacuum by evaporation onto (001) NaCl substrates cleaved in-situ, and maintained at ∼ 350° C. Murr has also produced large-grained and single-crystal Pd films by high-rate evaporation onto (001) NaCl air-cleaved substrates at 350°C. In the present work, very large (∼ 3cm2), continuous single-crystal films of Pd have been prepared by flash evaporation onto air-cleaved (001) NaCl substrates at temperatures at or below 250°C. Evaporation rates estimated to be ≧ 2000 Å/sec, were obtained by effectively short-circuiting 1 mil tungsten evaporation boats in a self-regulating system which maintained an optimum load current of approximately 90 amperes; corresponding to a current density through the boat of ∼ 4 × 104 amperes/cm2.


Author(s):  
E. Baer

The most advanced macromolecular materials are found in plants and animals, and certainly the connective tissues in mammals are amongst the most advanced macromolecular composites known to mankind. The efficient use of collagen, a fibrous protein, in the design of both soft and hard connective tissues is worthy of comment. Very crudely, in bone collagen serves as a highly efficient binder for the inorganic hydroxyappatite which stiffens the structure. The interactions between the organic fiber of collagen and the inorganic material seem to occur at the nano (scale) level of organization. Epitatic crystallization of the inorganic phase on the fibers has been reported to give a highly anisotropic, stress responsive, structure. Soft connective tissues also have sophisticated oriented hierarchical structures. The collagen fibers are “glued” together by a highly hydrated gel-like proteoglycan matrix. One of the simplest structures of this type is tendon which functions primarily in uniaxial tension as a reinforced elastomeric cable between muscle and bone.


Sign in / Sign up

Export Citation Format

Share Document