scholarly journals Strain-Rate-Dependent Tensile Response of Ti–5Al–2.5Sn Alloy

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 659 ◽  
Author(s):  
Bin Zhang ◽  
Jin Wang ◽  
Yang Wang ◽  
Yu Wang ◽  
Ziran Li

This study is an experimental investigation on the tensile responses of Ti–5Al–2.5Sn alloy over a wide range of strain rates. Uniaxial tension tests within the rate range of 10−3–101 s−1 are performed using a hydraulic driven MTS810 machine and a moderate strain-rate testing system. The high-rate uniaxial tension and tension recovery tests are conducted using a split-Hopkinson tension bar to obtain the adiabatic and isothermal stress–strain responses of the alloy under dynamic loading conditions. The experimental results show that the value of the initial yield stress increases with the increasing strain rate, while the strain rate sensitivity is greater at high strain rates. The isothermal strain-hardening behavior changes little with the strain rate, and the adiabatic temperature rise is the main reason for the reduction of the strain-hardening rate during high strain-rate tension. The electron backscatter diffraction (EBSD) analysis of the post-deformed samples indicates that there are deformation twins under quasi-static and high-rate tensile loadings. Scanning electron microscope (SEM) micrographs of the fracture surfaces of the post-deformed samples show dimple-like features. The Zerilli–Armstrong model is modified to incorporate the thermal-softening effect of the adiabatic temperature rise at high strain rates and describe the tension responses of Ti–5Al–2.5Sn alloy over strain rates from quasi-static to 1050 s−1.

2008 ◽  
Vol 75 (1) ◽  
Author(s):  
M. Garg ◽  
A. D. Mulliken ◽  
M. C. Boyce

Many polymeric materials undergo substantial plastic strain prior to failure. Much of this post yield deformation is dissipative and, at high strain rates, will result in a substantial temperature rise in the material. In this paper, an infrared (IR) detector system is constructed to measure the rise in temperature of a polymer during high strain rate compression testing. Temperature measurements were made using a high-speed mercury-cadmium-telluride (HgCdTe) single-element photovoltaic detector sensitive in the mid-infrared spectrum (6–12μm), while mechanical deformation was accomplished in a split Hopkinson pressure bar (SHPB). Two representative polymers, an amorphous thermoplastic (polycarbonate (PC)) and a thermoset epoxy (EPON 862/W), were tested in uniaxial compression at strain rates greater than 1000s−1 while simultaneously measuring the specimen temperature as a function of strain. For comparison purposes, analogous measurements were conducted on these materials tested at a strain rate of 0.5s−1 on another test system. The data are further reduced to energy quantities revealing the dissipative versus storage character of the post yield work of deformation. The fraction of post yield work that is dissipative was found to be a strong function of strain for both polymers. Furthermore, a greater percentage of work is found to be dissipative at high rates of strain (>1000s−1) than at the lower rate of strain (0.5s−1) for both polymers; this is consistent with the need to overcome an additional energy barrier to yield at strain rates greater than 100s−1 in these two polymers. The highly cross-linked thermoset polymer was found to store a greater percentage of the post yield work of deformation than the physically entangled thermoplastic.


2021 ◽  
Author(s):  
ANDREW MATEJUNAS ◽  
LLOYD FLETCHER ◽  
LESLIE LAMBERSON

Polymer matrix composites often exhibit a strong strain rate dependance in their mechanical response. In many of these materials, the viscoelastic behavior of the polymer matrix drives the rate dependence in the composite, however identifying these parameters at high strain rate presents a significant challenge. Common high-rate material characterization techniques such as the Kolsky (split-Hopkinson pressure) bar require a large test matrix across a range of strain rates. Kolsky bars also struggle to identify constitutive parameters prior to the yield due to inertial effects and the finite period of time required to reach force equilibrium. The Image Based Inertial Impact (IBII) test has been successfully used to identify linear elastic constitutive behavior of composites at high strain rates, but, to date, has only been used to extract constitutive properties at a single nominal strain rate in each test. Here, we propose an adaptation of the IBII test to identify viscoelastic parameters at high strain rates using full-field displacement data and the nonlinear virtual fields method (VFM). We validate the technique with finite element simulations of an IBII test on a model viscoelastic material that is characterized with a Prony series formulation of the generalized Maxwell model. The nonlinear VFM is then used to extract the Prony pairs for dynamic moduli and time constants from the full-field deformation data. The nonlinear viscoelastic identification allows for characterization of the evolution of mechanical response across a range of strain rates in a single experiment. The experimentally identified viscoelastic parameters of the matrix can then be used to predict the behavior of the composite at high strain rates. This approach will also be validated experimentally using a single-stage gas-gun to characterize the high-rate viscoelastic response of PMMA.


2013 ◽  
Vol 303-306 ◽  
pp. 2648-2651
Author(s):  
Xu Qing Chang ◽  
Tie Hua Ma

The mechanical behaviour of as-cast AZ31 Mg alloy has been investigated at strain rates up to 2.0×103s-1. Dynamic tests were carried out at room temperature using a Split Hopkinson Pressure Bar (SHPB) apparatus. Microstructural characteristic were analysed by Image MAT A1 optical microscopy. The results demonstrated that AZ31 Mg alloy exhibited obvious yield phenomena and strain hardening behaviour at high strain rates. The basically same curvature of stress-strain curves exhibited an similar strain hardening rate. The dynamic yield strength changes little and the peak stress increases with the strain rates. An examination by optical microscopy after high strain rate deformation reveals the occurrence of twinning and twin area percentage increases with the strain rate increasing.


2017 ◽  
Vol 742 ◽  
pp. 113-120 ◽  
Author(s):  
Ralf Eckner ◽  
Lutz Krüger

Metal matrix composites with ceramic reinforcements such as particles or fibers have come into focus during the past decades due to rising requirements on engineering materials. In this work, composite materials out of high-alloy CrMnNi-steel matrices with varying Ni-contents (3 wt.% and 9 wt.%) and 10 vol.% Mg-PSZ were processed by hot-pressing. The variation in Ni-content resulted in a change in stacking fault energy (SFE) which significantly influenced the deformation mechanisms. The mechanical behavior of the developed composites was investigated in a wide strain rate range between 0.0004 s-1 and 2300 s-1 under compressive loading. This was done by a servohydraulic testing system, a drop weight tower, and a Split-Hopkinson Pressure Bar for the high strain rates. To study the influence on the deformation mechanisms such as martensitic transformations and/or twinning, interrupted tests were also carried out at 25 % compressive strain. Subsequent microstructural examinations were done by a magnetic balance to measure the quantity of α’-martensite as well as by scanning electron microscopy (SEM). The results show an increase of strength and strain hardening with decreasing SFE of the matrix due to increased α’-martensite formation. The addition of the Mg-PSZ particles resulted in further strengthening over almost the entire deformation range for all investigated composites. At high strain rates quasi-adiabatic heating suppressed the martensite transformation and reduced the strain hardening capacity of the matrix. Nonetheless the particle reinforcement retains its strengthening effect.


2012 ◽  
Vol 527 ◽  
pp. 159-164 ◽  
Author(s):  
Dmitri Gomon ◽  
Mikko Hokka ◽  
Veli Tapani Kuokkala

The current research concentrates on the characterization of the mechanical behavior of Ti-6Al-2Sn-4Zr-6Mo alloy. The material was studied in compression using the Split Hopkinson Pressure Bar (SHPB) equipment at high strain rates and conventional servohydraulic materials testing devices at low strain rates. The tests were performed at temperatures ranging from room temperature up to 600 °C. According to the results of the compression tests, the strain hardening rate of the studied material decreases strongly with increasing strain rate. The observed strong decrease in the strain hardening rate with increasing strain rate is a consequence of the extremely strong adiabatic heating of the material due to its high strength and low thermal conductivity. In this study, the Johnson-Cook material model parameters were obtained from isothermal stress-strain curves that were calculated from the experimental (adiabatic) stress-strain data. In this paper, the results of the mechanical testing at high strain rates and the numerical modeling of the material behavior are presented and discussed in details.


2019 ◽  
Vol 812 ◽  
pp. 38-44
Author(s):  
Shuai Chen ◽  
Wen Bin Li ◽  
Xiao Ming Wang ◽  
Wen Jin Yao

This work compares the pure copper (T2 copper)’s stress-strain relationship at different strain rates in the uni-axial tension test and Split Hopkinson Pressure Bar (SHPB) test. Small samples were utilized in the high strain rate SHPB test in which the accuracy was modified by numerical simulation. The experimental results showed that the T2 copper’s yield strength at high strain rates largely outweighed the quasi static yield strength. The flow stress in the stress-strain curves at different strain rates appeared to be divergent and increased with the increase in strain rates, showing great strain strengthening and strain rate hardening effects. Metallographic observation showed that the microstructure of T2 copper changed from equiaxed grains to twins and the interaction between the dislocation slip zone grain boundary and twins promoted the super plasticity distortion in T2 copper.


2011 ◽  
Vol 45 (24) ◽  
pp. 2495-2506 ◽  
Author(s):  
Pibo Ma ◽  
Hong Hu ◽  
Lvtao Zhu ◽  
Baozhong Sun ◽  
Bohong Gu

This article reports the tensile behaviors of a novel kind of 3D textile composite, named as co-woven-knitted fabric (CWKF) reinforced composite, under quasi-static and high strain rates. The tensile tests were conducted along the warp direction (0°), bias direction (45°), and weft direction (90°) at quasi-static strain rate of 0.001/s and high strain rates ranging from 1589/s to 2586/s. The results indicate that the tensile strength, failure strain, tensile stiffness, energy absorption, and resilient energy are strain rate sensitive along all the three directions. The relationships between the mechanical parameters and the strain rate were also analyzed. The fractograph of the CWKF composite demonstrate that the tensile failure modes are matrix shear failure and fibers breakage under the quasi-static testing condition while interface failure and fibers pullout are at high strain rates.


Author(s):  
Adewale Olasumboye ◽  
Gbadebo Owolabi ◽  
Olufemi Koya ◽  
Horace Whitworth ◽  
Nadir Yilmaz

Abstract This study investigates the dynamic response of AA2519 aluminum alloy in T6 temper condition during plastic deformation at high strain rates. The aim was to determine how the T6 temper condition affects the flow stress response, strength properties and microstructural morphologies of the alloy when impacted under compression at high strain rates. The specimens (with aspect ratio, L/D = 0.8) of the as-cast alloy used were received in the T8 temper condition and further heat-treated to the T6 temper condition based on the standard ASTM temper designation procedures. Split-Hopkinson pressure bar experiment was used to generate true stress-strain data for the alloy in the range of 1000–3500 /s strain rates while high-speed cameras were used to monitor the test compliance with strain-rate constancy measures. The microstructures of the as received and deformed specimens were assessed and compared for possible disparities in their initial microstructures and post-deformation changes, respectively, using optical microscopy. Results showed no clear evidence of strain-rate dependency in the dynamic yield strength behavior of T6-temper designated alloy while exhibiting a negative trend in its flow stress response. On the contrary, AA2519-T8 showed marginal but positive response in both yield strength and flow behavior for the range of strain rates tested. Post-deformation photomicrographs show clear disparities in the alloys’ initial microstructures in terms of the second-phase particle size differences, population density and, distribution; and in the morphological changes which occurred in the microstructures of the different materials during large plastic deformation. AA2519-T6 showed a higher susceptibility to adiabatic shear localization than AA2519-T8, with deformed and bifurcating transformed band occurring at 3000 /s followed by failure at 3500 /s.


2018 ◽  
Vol 183 ◽  
pp. 02042
Author(s):  
Lloyd Fletcher ◽  
Fabrice Pierron

Testing ceramics at high strain rates presents many experimental diffsiculties due to the brittle nature of the material being tested. When using a split Hopkinson pressure bar (SHPB) for high strain rate testing, adequate time is required for stress wave effects to dampen out. For brittle materials, with small strains to failure, it is difficult to satisfy this constraint. Because of this limitation, there are minimal data (if any) available on the stiffness and tensile strength of ceramics at high strain rates. Recently, a new image-based inertial impact (IBII) test method has shown promise for analysing the high strain rate behaviour of brittle materials. This test method uses a reflected compressive stress wave to generate tensile stress and failure in an impacted specimen. Throughout the propagation of the stress wave, full-field displacement measurements are taken, from which strain and acceleration fields are derived. The acceleration fields are then used to reconstruct stress information and identify the material properties. The aim of this study is to apply the IBII test methodology to analyse the stiffness and strength of ceramics at high strain rates. The results show that it is possible to identify the elastic modulus and tensile strength of tungsten carbide at strain rates on the order of 1000 s-1. For a tungsten carbide with 13% cobalt binder the elastic modulus was identified as 516 GPa and the strength was 1400 MPa. Future applications concern boron carbide and sapphire, for which limited data exist in high rate tension.


Sign in / Sign up

Export Citation Format

Share Document