Quantifying Uncertainties in Ground Motion-Macroseismic Intensity Conversion Equations. A Probabilistic Relationship for Western China

Author(s):  
Ke Du ◽  
Baorong Ding ◽  
Wen Bai ◽  
Jingjiang Sun ◽  
Jiulin Bai
2021 ◽  
Vol 64 (4) ◽  
pp. SE432
Author(s):  
Iren-Adelina Moldovan ◽  
Angela Petruta Constantin ◽  
Raluca Partheniu ◽  
Bogdan Grecu ◽  
Constantin Ionescu

The goal of this paper is to develop a new empirical relationship between observed macroseismic intensity and strong ground motion parameters such as peak ground acceleration (PGA) and velocity (PGV) for the Vrancea subcrustal earthquakes. The recent subcrustal earthquakes provide valuable data to examine these relationships for Vrancea seismogenic region. This region is one of the most active seismic zones in Europe and it is well-known for the strong subcrustal earthquakes. We examine the correlation between the strong ground-motion records and the observed intensities for major and moderate earthquakes with Mw ≥ 5.4 and epicentral intensity in the range VI to IX MSK degrees that occurred in Vrancea zone in the period 1977-2009. The empirical relationships between maximum intensity and ground parameters obtained and published by various authors have shown that these parameters do not always show a one-to-one correspondence, and the errors associated with the intensity estimation from PGA/PGV are sometimes +/-2 MSK degree. In the present study, the relation between macroseismic intensity and PGA/PGV will be given both as a mathematical equation, but also as corresponding ground motion intervals. Because of the intensity data spreading and errors related to mathematical approximations, it is necessary to systematically monitor not only the acceleration and velocity but also all the other ground motion parameters. The mathematical relation between these parameters might be used for the rapid assessment of ground shaking severity and potential damages in the areas affected by the Vrancea earthquakes.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Tuo Chen ◽  
Wei Ma ◽  
Jianzhou Wang

Loess is widely distributed in the western part of China and its area comprises 6.6% of Chinese territory. Because of the characteristics of high porosity, low strength, and weak cementation, the loess is characterized by high seismic vulnerability which has been observed and confirmed by many researchers at home and abroad. The postquake field investigation and the laboratory study have shown that the ground motion effects, including the amplification effects and slope effects, were obvious in loess sites. Moreover, the causes of landslides, seismic subsidence, and liquefaction were mainly attributed to this special soil structure and properties. In this paper, based on the data of shear wave velocity of typical loess in Lanzhou region, combining the results of dynamic triaxial tests, the numerical analysis of ground motion effects in the loess regions is analyzed. The results reveal how the ground motion effects are checked and demonstrated the important role of numerical simulations while studying the characteristics of ground motions.


Author(s):  
Davis T. Engler ◽  
C. Bruce Worden ◽  
Eric M. Thompson ◽  
Kishor S. Jaiswal

ABSTRACT Rapid estimation of earthquake ground shaking and proper accounting of associated uncertainties in such estimates when conditioned on strong-motion station data or macroseismic intensity observations are crucial for downstream applications such as ground failure and loss estimation. The U.S. Geological Survey ShakeMap system is called upon to fulfill this objective in light of increased near-real-time access to strong-motion records from around the world. Although the station data provide a direct constraint on shaking estimates at specific locations, these data also heavily influence the uncertainty quantification at other locations. This investigation demonstrates methods to partition the within- (phi) and between-event (tau) uncertainty estimates under the observational constraints, especially when between-event uncertainties are heteroscedastic. The procedure allows the end users of ShakeMap to create separate between- and within-event realizations of ground-motion fields for downstream loss modeling applications in a manner that preserves the structure of the underlying random spatial processes.


2012 ◽  
Vol 28 (2) ◽  
pp. 457-485 ◽  
Author(s):  
Kenneth W. Campbell ◽  
Yousef Bozorgnia

Cumulative absolute velocity (CAV) has been proposed as an instrumental index to quantify the potential earthquake damage to structures. We explore this idea further by developing a relationship between the standardized version of CAV and the Japan Meteorological Agency (JMA) and modified Mercalli (MMI) instrumental seismic intensities in order to correlate standardized CAV with the qualitative descriptions of damage in the corresponding macroseismic intensity scales. Such an analysis statistically identifies the threshold values of standardized CAV associated with the onset of damage to buildings of good design and construction inherent in these scales. Based on these results, we suggest that CAV might be used to rapidly assess the potential damage to a general class of conventional structures after an earthquake. However, other ground motion or damage-related parameters might be better suited to quantifying the potential damage to structures of a specific type and size.


2020 ◽  
Vol 18 (11) ◽  
pp. 5143-5164 ◽  
Author(s):  
Augusto Antonio Gomez-Capera ◽  
Maria D’Amico ◽  
Giovanni Lanzano ◽  
Mario Locati ◽  
Marco Santulin

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Tuo Chen ◽  
Zhijian Wu ◽  
Yanhu Mu ◽  
Ping Wang ◽  
Qiyin Zhu

The Loess Plateau is one of the most tectonically and seismically active areas in the world. Observations from past strong earthquakes, particularly the Minxian–Zhangxian and Wenchuan earthquakes, have shown distinctive evidence of seismic site effects in the mountainous area of southeastern Gansu province. In this study, seismic damage in the loess areas of southeastern Gansu province induced by these earthquakes was investigated and briefly described. Different types of ground motion were selected, and the one-dimensional equivalent linear method was used for numerical analysis of the ground motion effects in the loess regions. Moreover, seismic response analysis of a typical loess tableland was conducted. The results showed that the seismic responses of a typical loess tableland under different seismic excitations have totally different dynamic characteristics. Moreover, the seismic damage in loess regions was more serious under far-field seismic excitation compared with near-field seismic excitation with the same peak acceleration. Through this study, the quantitative assessment of ground motion effects can be approximately estimated and the mechanism of site amplification effects on ground motion is further explained.


Sign in / Sign up

Export Citation Format

Share Document