A simplification of railway vehicle lateral vibration model based on LQG control strategy

2018 ◽  
Vol 16 (2) ◽  
pp. 147-161
Author(s):  
WANG Yi-Xuan ◽  
CHEN En-Li ◽  
LIU Peng-Fei ◽  
QI Zhuang ◽  
ZHANG Lin
2021 ◽  
Vol 145 ◽  
pp. 110789
Author(s):  
Parthasakha Das ◽  
Samhita Das ◽  
Pritha Das ◽  
Fathalla A. Rihan ◽  
Muhammet Uzuntarla ◽  
...  

2018 ◽  
Vol 24 (9) ◽  
pp. 933-944 ◽  
Author(s):  
Anastasios C. Papachristou ◽  
Charalampos A. Vallianos ◽  
Vasken Dermardiros ◽  
Andreas K. Athienitis ◽  
JosÉ A. Candanedo

2011 ◽  
Vol 243-249 ◽  
pp. 1646-1650
Author(s):  
Wen Ping Li ◽  
Shu Li Chen ◽  
Mu Biao Su

In this paper, the vehicle-bridge lateral vibration mechanism was analyzed; the vehicle-bridge vibration model was built and the lateral reinforcement schemes of open steel plate bridges were designed. Numbers of analysis were carried out for the lateral vibration of 40m deck steel plate bridges before and after reinforcement, under input of random artificial hunting waves and track irregularity. The results showed that, the frequency of hunting motion is approaching loaded frequency of the girder. The larger lateral amplitude appears on the bridge when the hunting wavelength is around 8~9m and the velocity of the train is around 55~70km/h. The wavelength is longer, the resonant velocity of the bridge is higher.


Author(s):  
Prashant Srinivasan ◽  
Sanketh Bhat ◽  
Manthram Sivasubramaniam ◽  
Ravi Methekar ◽  
Maruthi Devarakonda ◽  
...  

Large bore reciprocating internal combustion engines are used in a wide variety of applications such as power generation, transportation, gas compression, mechanical drives, and mining. Each application has its own unique requirements that influence the engine design & control strategy. The system architecture & control strategy play a key role in meeting the requirements. Traditionally, control design has come in at a later stage of the development process, when the system design is almost frozen. Furthermore, transient performance requirements have not always been considered adequately at early design stages for large engines, thus limiting achievable controller performance. With rapid advances in engine modeling capability, it has now become possible to accurately simulate engine behavior in steady-states and transients. In this paper, we propose an integrated model-based approach to system design & control of reciprocating engines and outline ideas, processes and real-world case studies for the same. Key benefits of this approach include optimized engine performance in terms of efficiency, transient response, emissions, system and cost optimization, tools to evaluate various concepts before engine build thus leading to significant reduction in development time & cost.


Author(s):  
Md Mahfuzur Rahman ◽  
Najmin Ara Sultana ◽  
Linda Vahala ◽  
Leryn Reynolds ◽  
Zhili Hao

Abstract With the goal of achieving consistence in interpretation of an arterial pulse signal between its vibration model and its hemodynamic relations and improving its physiological implications in our previous study, this paper presents an improved vibration-model-based analysis for estimation of arterial parameters: elasticity (E), viscosity (η), and radius (r0) at diastolic blood pressure (DBP) of the arterial wall, from a noninvasively measured arterial pulse signal. The arterial wall is modeled as a unit-mass vibration model, and its spring stiffness (K) and damping coefficient (D) are related to arterial parameters. Key features of a measured pulse signal and its first-order and second-order derivatives are utilized to estimate the values of K and D. These key features are then utilized in hemodynamic relations, where their interpretation is consistent with the vibration model, to estimate the value of r0 from K and D. Consequently, E, η, and pulse wave velocity (PWV) are also estimated from K and D. The improved vibration-model-based analysis was conducted on pulse signals of a few healthy subjects measured under two conditions: at-rest and immediately post-exercise. With E, r0, and PWV at-rest as baseline, their changes immediately post-exercise were found to be consistent with the related findings in the literature. Thus, this improved vibration-model-based analysis is validated and contributes to estimation of arterial parameters with better physiological implications, as compared with its previous counterpart.


Sign in / Sign up

Export Citation Format

Share Document