scholarly journals Spatial and temporal variation patterns of Total Suspended Solids around the coastal areas of Bahrain, a water quality guideline

2020 ◽  
Vol 23 (2) ◽  
pp. 136-144
Author(s):  
Khadija Zainal ◽  
Ali Isa ◽  
Qaher Mandeel
2021 ◽  
Vol 13 (3) ◽  
pp. 336
Author(s):  
Sidrah Hafeez ◽  
Man Sing Wong ◽  
Sawaid Abbas ◽  
Guangjia Jiang

Ocean color sensors, typically installed on polar-orbiting satellites, have been used to monitor oceanic processes for last three decades. However, their temporal resolution is not considered to be adequate for monitoring highly dynamic oceanic processes, especially when considering data gaps due to cloud contamination. The Advanced Himawari Imager (AHI) onboard the Himawari-8, a geostationary satellite operated by the Japan Meteorological Agency (JMA), acquires imagery every 10 min at 500 m to 2000 m spatial resolution. The AHI sensor with three visible, one near-infrared (NIR), and two shortwave-infrared (SWIR) bands displays good potential in monitoring oceanic processes at high temporal resolution. This study investigated and identified an appropriate atmospheric correction method for AHI data; developed a model for Total Suspended Solids (TSS) concentrations estimation using hyperspectral data and in-situ measurements of TSS; validated the model; and assessed its potential to capture diurnal changes using AHI imagery. Two image-based atmospheric correction methods, the NIR-SWIR method and the SWIR method were tested for correcting the AHI data. Then, the new model was applied to the atmospherically corrected AHI data to map TSS and its diurnal changes in the Pearl River Estuary (PRE) and neighboring coastal areas. The results indicated that the SWIR method outperformed the NIR-SWIR method, when compared to in-situ water-leaving reflectance data. The results showed a good agreement between the AHI-derived TSS and in-situ measured data with a coefficient of determination (R²) of 0.85, mean absolute error (MAE) of 3.1 mg/L, a root mean square error (RMSE) of 3.9 mg/L, and average percentage difference (APD) of 30% (TSS range 1–40 mg/L). Moreover, the diurnal variation in the turbidity front, using the Normalized Suspended Material Index (NSMI), showed the capability of AHI data to track diurnal variation in turbidity fronts, due to high TSS concentrations at high temporal frequency. The present study indicates that AHI data with high image capturing frequency can be used to map surface TSS concentrations. These TSS measurements at high frequency are not only important for monitoring the sensitive coastal areas but also for scientific understanding of the spatial and temporal variation of TSS.


1996 ◽  
Vol 47 (6) ◽  
pp. 763 ◽  
Author(s):  
EG Abal ◽  
WC Dennison

Correlations between water quality parameters and seagrass depth penetration were developed for use as a biological indicator of integrated light availability and long-term trends in water quality. A year-long water quality monitoring programme in Moreton Bay was coupled with a series of seagrass depth transects. A strong gradient between the western (landward) and eastern (seaward) portions of Moreton Bay was observed in both water quality and seagrass depth range. Higher concentrations of chlorophyll a, total suspended solids, dissolved and total nutrients, and light attenuation coefficients in the water column and correspondingly shallower depth limits of the seagrass Zostera capricorni were observed in the western portions of the bay. Relatively high correlation coefficient values (r2 > 0.8) were observed between light attenuation coefficient, total suspended solids, chlorophyll a, total Kjeldahl nitrogen and Zostera capricorni depth range. Low correlation coefficient values (r2 < 0.8) between seagrass depth range and dissolved inorganic nutrients were observed. Seagrasses had disappeared over a five-year period near the mouth of the Logan River, a turbid river with increased land use in its watershed. At a site 9 km from the river mouth, a significant decrease in seagrass depth range corresponded to higher light attenuation, chlorophyll a, total suspended solids and total nitrogen content relative to a site 21 km from the river mouth. Seagrass depth penetration thus appears to be a sensitive bio-indicator of some water quality parameters, with application for water quality management.


2015 ◽  
Vol 41 (1) ◽  
pp. 13-19
Author(s):  
Kaniz Fatema ◽  
Wan Maznah Wan Omar ◽  
Mansor Mat Isa

Water quality in three different stations of Merbok estuary was investigated limnologically from October, 2010 to September, 2011. Water temperature, transparency and total suspended solids (TSS) varied from 27.45 - 30.450C, 7.5 - 120 cm and 10 -140 mg/l, respectively. Dissolved Oxygen (DO) concentration ranged from 1.22-10.8 mg/l, while salinity ranged from 3.5-35.00 ppt. pH and conductivity ranged from 6.35 - 8.25 and 40 - 380 ?S/cm, respectively. Kruskal Wallis H test shows that water quality parameters were significantly different among the sampling months and stations (p<0.05). This study revealed that DO, salinity, conductivity and transparency were higher in wet season and TSS was higher in dry season. On the other hand, temperature and pH did not follow any seasonal trends.Bangladesh J. Zool. 41(1): 13-19, 2013


2021 ◽  
Vol 25 (3) ◽  
pp. 34-43
Author(s):  
Tamarah A. Adnan ◽  
◽  
Eman A. Mohammed ◽  
Abdul-Sahib T. Al-Madhhachi ◽  
◽  
...  

Tigris River is the only potable source in Baghdad city therefor many water treatment plants were built on the banks such as Al-Karkh, Sharq Dijla, Al-Sadr, Al-Wathba, Al-Karama, AlQadisia, Al-Dora, Al-Wahda, and Al-Rashed project. Tigris River suffers from the pollution that comes from various sources such as Industry, domestic sanitation, and farming activities therefore several indices were used to calculate water quality within Baghdad to convert physicochemical parameters of water to a single value that represents the river status (good, bad, very bad, etc..).The aim of this review paper to show the results of previous studies about the water quality for the Baghdad region. Most results showed that water quality was good in the north of the city of Baghdad and bad in the south of Baghdad. The deterioration of water quality was due to many reasons such as the discharge of wastewater directly into the river without pretreatment, increase in (Electic conductivity, Turbidity, and total suspended solids, total hardness, Iron ion, the fecal coliform)concentrations, and Climate change, therefore, Tigris River needs intensive treatment before using by humans.


2017 ◽  
Vol 16 (1) ◽  
pp. 75-85
Author(s):  
O. E. OMOFUNMI ◽  
J. K. . ADEWUMI ◽  
A. F. ADISA ◽  
S. O. ALEGBELEYE

Catfish production is one of the largest segments of fish culture in Lagos State, Nigeria. However, catfish effluents, which usually deteriorate the environment, need to be controlled. The effect of paddle-wheel aerator in catfish effluent was evaluated. The volume of catfish effluent was collected into two basins and diluted at given ratios. The paddle-wheel aerator was installed in one basin, while another basin served as control in determining the impact of paddle wheel aerator on catfish effluents. Water qualities such as Total Suspended Solids (TSS), Total Nitrogen (TN), Total Phosphorus (TP), Total Ammonia (TNH3) and Nitrite (NO2-N) and Biochemical oxygen demand (BOD5) examined and ana-lysed. Results indicated that paddle-wheel aerator reduced TSS (24.4±1.5 %), TN2-N (53.3±1.2 %) , TNH3-N (65.2±1.2 %) , NO2-N (97.1±1.1 %) , TP (61.8±1.1 %) and BOD5 (54 ±1.5 %). com-pared with natural purification 33.9±1.6 % of TSS, 22.7±1.4 % of TN2-N, 29.3±1.6 % of TNH3-N, 53.9±1.2 % of NO2-N, 21.6±1.5 % of TP and 15.4±1.6 % of BOD5 at the same dilution ratio There were significant different (P ≤0.05) between paddle wheel aerator and natural purification in concen-trations reduction. The paddle wheel aerator was found to be relevant in the water quality improve-ment and thus recommend for small and medium scale fish farmers in controlling effluents.


2018 ◽  
Vol 52 (4) ◽  
pp. 19-31
Author(s):  
Christopher Buzzelli ◽  
Zhiqiang Chen ◽  
Peter Doering ◽  
Amanda Kahn

Abstract Coastal water bodies are impacted by watershed alterations, increased population density, modifications to inlets and shorelines, climatic periodicity, and increases in external material loads. Estuaries such as Lake Worth Lagoon (LWL) in south Florida possess all these attributes. The LWL watershed extends from the southeastern portion of Lake Okeechobee through Palm Beach County, where it meets the lagoon. Palm Beach County Department of Environmental Resources Management recognizes the social and ecological importance of the ~36 km lagoon and aims to maintain suitable water and habitat quality for all stakeholders. Recent declines and shifts of seagrass distribution along the lagoon prompted a step toward better understanding the water quality patterns of the system. In support of these efforts, this study assessed bathymetry, inflow, flushing, and water quality attributes (chlorophyll a, salinity, total nitrogen, total phosphorus, total suspended solids, turbidity) using data collected along a series of 14 midlagoon stations from 2007 to 2015. Salinity in the North Segment was higher and less variable because of proximity to Palm Beach Inlet. Although concentrations of chlorophyll a, total nitrogen, and total phosphorus correlated with freshwater inflow, turbidity and total suspended solids were not. Fast flushing of the lagoon on a scale of days likely precludes water quality issues common to many estuaries with higher resident times. However, the combination of landscape-scale water management, a shoreline that is almost 70% modified by hard structures, and changes in essential nearshore habitats, introduces new levels of uncertainty to both the understanding and management of LWL. From this study, increased knowledge of relationships among water quality parameters and their spatial and temporal variability in LWL provides points of reference from which targeted studies can be developed to explore links between environmental parameters and responses of key organisms in this unique system.


2018 ◽  
Vol 14 (4) ◽  
pp. 437-441 ◽  
Author(s):  
Katie L Hill ◽  
Roger L Breton ◽  
Gillian E Manning ◽  
R Scott Teed ◽  
Marie Capdevielle ◽  
...  

2019 ◽  
Vol 54 (2) ◽  
pp. 1102-1110 ◽  
Author(s):  
Andrew P. Negri ◽  
Rachael A. Smith ◽  
Olivia King ◽  
Julius Frangos ◽  
Michael St. J. Warne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document