Effect of aluminum hydroxide (ATH) on flame retardancy and smoke suppression properties of SBS-modified asphalt

Author(s):  
Xiaolong Yang ◽  
Guangchen Wang ◽  
Mingmei Liang ◽  
Taiping Yuan ◽  
Hongliu Rong
2021 ◽  
Vol 36 (1) ◽  
pp. 3-12
Author(s):  
Q. Cao ◽  
Q.-G. Cao ◽  
X.-X. Qiu ◽  
J. Song

Abstract Polyurethane is a widely used polymer that has good abrasion resistance and low-temperature resistance. However, polyurethane composite materials are highly inflammable and thus require the use of flame retardants. This study selected green and environment-friendly flame retardants such as expanded graphite, aluminum hydroxide, and kaolin to be used as individual or paired retardants to produce polyurethane composites. By analyzing the potential and mechanical properties of the polyurethane composites, it was found that the composite material with the flame retardant composed of graphite and modified kaolin had better flame retardancy, smoke suppression performance, and high thermal stability.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2249
Author(s):  
Bei Chen ◽  
Fuqiang Dong ◽  
Xin Yu ◽  
Changjiang Zheng

In order to solve the problems caused by asphalt diseases and prolong the life cycle of asphalt pavement, many studies on the properties of modified asphalt have been conducted, especially polyurethane (PU) modified asphalt. This study is to replace part of the styrene-butadiene-styrene (SBS) modifier with waste polyurethane (WP), for preparing WP/SBS composite modified asphalt, as well as exploring its properties and microstructure. On this basis, this paper studied the basic performance of WP/SBS composite modified asphalt with a conventional performance test, to analyze the high- and low-temperature rheological properties, permanent deformation resistance and storage stability of WP/SBS composite modified asphalt by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The microstructure of WP/SBS composite modified asphalt was also observed by fluorescence microscope (FM) and Fourier transform infrared spectroscopy (FTIR), as well as the reaction between WP and asphalt. According to the results of this study, WP can replace SBS as a modifier to prepare WP/SBS composite modified asphalt with good low-temperature resistance, whose high-temperature performance will be lower than that of SBS modified asphalt. After comprehensive consideration, 4% SBS content and 15% WPU content (4 S/15 W) are determined as the suitable types of WPU/SBS composite modified asphalt.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ping Li ◽  
Yuan Zhang ◽  
Yingfeng Zuo ◽  
Yiqiang Wu ◽  
Guangming Yuan ◽  
...  

AbstractInorganic impregnation strengthening of Chinese fir wood was carried out to improve the strength, dimensional stability, flame retardancy, and smoke suppression of Chinese fir wood. Sodium silicate was used as reinforcement, a sulfate and phosphate mixtures were used as a curing agent, and Chinese fir wood was reinforced by the respiratory impregnation method (RIM) that imitating human respiration and vacuum progressive impregnation method (VPIM). The weight percentage gain (WPG), density increase rate, distribution of modifier, bending strength (BS), compressive strength (CS), hardness, and water resistance of unreinforced Chinese fir wood from the VPIM and RIM were compared. It was found that RIM could effectively open the aspirated pits in Chinese fir wood, so its impregnation effect, strengthen effect and dimension stabilization effects were the best. RIM-reinforced Chinese fir wood was filled with silicate both horizontally and vertically. At the same time, the transverse permeability of silicate through aspirated pits was significantly improved. The chemical structure, crystalline structure, flame retardancy, smoke suppression, and thermal stability of VPIM- and RIM-reinforced Chinese fir wood were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cone calorimeter (CONE), and thermogravimetric analysis (TGA). The results indicated that although the crystallinity of RIM-reinforced Chinese fir wood decreased the most, more chemical crosslinking and hydrogen bonding were formed in the wood, and the strengthen effect was still the best. Compared with VPIM-reinforced Chinese fir wood, RIM-reinforced Chinese fir wood had lower heat release rate (HRR), peak-HRR, mean-HRR, total heat release (THR), smoke production rate (SPR), and total smoke production (TSP), higher thermal decomposition temperature and residual rate. It was indicated that RIM-reinforced Chinese fir wood was a better flame retardant, and has a smoke suppression effect, thermal stability, and safety performance in the case of fire.


2021 ◽  
Vol 282 ◽  
pp. 122733
Author(s):  
Song Xu ◽  
Yong Fan ◽  
Zhengang Feng ◽  
Yunbin Ke ◽  
Canlin Zhang ◽  
...  

2013 ◽  
Vol 365-366 ◽  
pp. 978-982
Author(s):  
Xiao Wei Feng ◽  
De Wen Zhang

The softening point of modified asphalt is an extremely important indicator to evaluate the high-temperature performance; its the temperature of modified asphalt sample emerging shear deformation under the action of certain shear stress according to the specific heating rate. Its found that in the actual construction and testing, different temperature conditions has a larger impact on the softening point of the modified asphalt, which has adverse affect on road construction. This paper studied and researched the influence of temperature on modified asphalt softening point indicators from the different test temperature, including packing compact temperature, scraper temperature in removal of asphalt that above test mode, standing temperature, curing temperature and initial heating temperature before test.


2012 ◽  
Vol 178-181 ◽  
pp. 1442-1447 ◽  
Author(s):  
Ai Hong Kang ◽  
Wu Hong Zhang

To explore the relationships between the performances and microstructures of modified asphalt, in the tests, one kind of basic asphalt、two kinds of modifiers and four kinds of modifiers content were selected to prepare modified asphalt. The SBS modified asphalt performances such as softening point, viscosity, Rutting Factor G*/sinδ and the corresponding microstructures with different shearing time were analyzed. The results show that different modifiers have different modification effects on the asphalt,but the change trends of performances and microstructures with the modifier content and shearing time are basically the same. It is also found that there is a good relationship between microstructure and macro performance, the average area of the modifier is closely related to the softening point, total area (or area percentage) and the shape factor of the modifier are suitable to reflect the mechanical behavior of modified asphalts.


Sign in / Sign up

Export Citation Format

Share Document