Hybrid Ventilation for Multi-Zone Buildings - Development of Optimal Control Strategies through Experiments and Dynamic Modelling

2011 ◽  
Vol 9 (4) ◽  
pp. 305-313 ◽  
Author(s):  
Olivier Jung ◽  
Mohamed El Mankibi ◽  
Andrea Kindinis ◽  
Pierre Michel
1986 ◽  
Vol 108 (4) ◽  
pp. 330-339 ◽  
Author(s):  
M. A. Townsend ◽  
D. B. Cherchas ◽  
A. Abdelmessih

This study considers the optimal control of dry bulb temperature and moisture content in a single zone, to be accomplished in such a way as to be implementable in any zone of a multi-zone system. Optimality is determined in terms of appropriate cost and performance functions and subject to practical limits using the maximum principle. Several candidate optimal control strategies are investigated. It is shown that a bang-bang switching control which is theoretically periodic is a least cost practical control. In addition, specific attributes of this class of problem are explored.


2013 ◽  
Vol 671-674 ◽  
pp. 2515-2519
Author(s):  
Xue Mei Wang ◽  
Zhen Hai Wang ◽  
Xing Long Wu

This project aims to study the optimal control model of the ice-storage system which is theoretically close to the optimal control and also applicable to actual engineering. Using Energy Plus, the energy consumption simulation software, and the simple solution method of optimal control, researchers can analyze and compare the annual operation costs of the ice-storage air-conditioning system of a project in Beijing under different control strategies. Researchers obtained the power rates of the air-conditioning system in the office building under the conditions of chiller-priority and optimal contro1 throughout the cooling season. Through analysis and comparison, they find that after the implementation of optimal control, the annually saved power bills mainly result from non-design conditions, especially in the transitional seasons.


2021 ◽  
Author(s):  
Mohsen Banaei ◽  
Jalil Boudjadar ◽  
Razgar Ebrahimy ◽  
Henrik Madsen

2004 ◽  
Vol 120 ◽  
pp. 325-335
Author(s):  
D. Hömberg ◽  
S. Volkwein ◽  
W. Weiss

We discuss control strategies for the surface hardening of steel with laser or electron beam. The goal is to acchieve a prescribed hardening depth avoiding surface melting. Our mathematical model consists of a system of ODEs for the phase volume fractions coupled with the heat equation. The system is solved semi-implicitely using the finite element method. For the optimal control we discuss two approaches: model reduction using POD (Proper Orthogonal Decomposition) and a feedback control of temperature. The numerical results prove that it is not sufficient to control the surface temperature in order to obtain a uniform hardening depth. Instead the best strategy should be to compute the optimal temperature in the hot spot of the beam by solving the control problem and use this temperature as the set-point for the pyrometer control of the real process.


1993 ◽  
Vol 28 (11-12) ◽  
pp. 9-14 ◽  
Author(s):  
Troy D. Vassos

The need to optimize treatment plant performance and to meet increasingly stringent effluent criteria are two key factors affecting future development of instrumentation, control and automation (ICA) applications in the water and wastewater industry. Two case studies are presented which highlight the need for dynamic modelling and simulation software to assist operations staff in developing effective instrumentation control strategies, and to provide a training environment for the evaluation of such strategies. One of the limiting factors to date in realizing the potential benefits of ICA has been the inability to adequately interpret the large number of existing instrumentation inputs available at treatment facilities. The number of inputs can exceed the number of control loops by up to three orders of magnitude. The integration of dynamic modelling and expert system software is seen to facilitate the interpretation of real-time data, allowing both quantitative (instrumented) and qualitative (operator input) information to be integrated for process control. Improvements in sensor reliability and performance, and the development of biological monitoring sensors and control algorithms are also discussed.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 149-170
Author(s):  
Afeez Abidemi ◽  
Rohanin Ahmad ◽  
Nur Arina Bazilah Aziz

This study presents a two-strain deterministic model which incorporates Dengvaxia vaccine and insecticide (adulticide) control strategies to forecast the dynamics of transmission and control of dengue in Madeira Island if there is a new outbreak with a different virus serotypes after the first outbreak in 2012. We construct suitable Lyapunov functions to investigate the global stability of the disease-free and boundary equilibrium points. Qualitative analysis of the model which incorporates time-varying controls with the specific goal of minimizing dengue disease transmission and the costs related to the control implementation by employing the optimal control theory is carried out. Three strategies, namely the use of Dengvaxia vaccine only, application of adulticide only, and the combination of Dengvaxia vaccine and adulticide are considered for the controls implementation. The necessary conditions are derived for the optimal control of dengue. We examine the impacts of the control strategies on the dynamics of infected humans and mosquito population by simulating the optimality system. The disease-freeequilibrium is found to be globally asymptotically stable whenever the basic reproduction numbers associated with virus serotypes 1 and j (j 2 {2, 3, 4}), respectively, satisfy R01,R0j 1, and the boundary equilibrium is globally asymptotically stable when the related R0i (i = 1, j) is above one. It is shown that the strategy based on the combination of Dengvaxia vaccine and adulticide helps in an effective control of dengue spread in the Island.


Sign in / Sign up

Export Citation Format

Share Document