Bioactive compounds from marine resources against novel corona virus (2019-nCoV): in silico study for corona viral drug

2020 ◽  
pp. 1-5
Author(s):  
R. Vijayaraj ◽  
K. Altaff ◽  
A. Sherlin Rosita ◽  
S. Ramadevi ◽  
J. Revathy
2021 ◽  
Vol 16 (7) ◽  
pp. 180-196
Author(s):  
P. Sangavi ◽  
R. Rajapriya ◽  
Firthous Sannathul ◽  
K. Langeswaran ◽  
S. Gowtham Kumar

In this study, the aqueous and ethanol extracts of Musa sapientum peel and pulp were investigated for phytochemical screening and antioxidant activity. Antimicrobial activity and Minimal Inhibitory Concentration (MIC) were analyzed against three different microbial pathogens. From the reported GCMS analysis, the selected compounds were subjected to anti-cancer activity against breast cancer using in silico study. The highest antioxidant activity, presence of secondary metabolites and microbial activity were observed in a significant range. MIC examination revealed that the three different microbial pathogens were sensitive for the peel extract. . In silico study, out of 7 selected compounds, 4 compounds exhibit the highest docking score, binding free energy and acceptable pharmaceutical properties. Molecular dynamics simulation was performed for the top two compounds and the resulting analysis explained the protein-ligand stability and the results concluded that the lead compounds possess the highest stability. From this study, it was concluded that the selective bioactive compounds from Musa sapientum peel exhibited significant antioxidant and antimicrobial activity through in vitro analysis and also the bioactive compounds possessed anti-cancer property which was revealed by in silico investigation.


2021 ◽  
Author(s):  
Love Edet Mendie ◽  
S Hemalatha

Abstract Drug delivery in a safe manner is a major challenge in the drug development process. Growth factor receptors (GFRs) are known to have profound roles in the growth and progression of cancerous cells making these receptors a therapeutic target in the effective treatment of cancer. This work focused on exploring bioactive compounds that can target GFRs usingin-silico method. In this study, 50 bioactive compounds from different plant sources were screened as anticancer agent against GFRs using drug likeness parameters of Lipinski’s rule of five. The molecular docking was performed between phytochemicals and GFRs. Ligands with acceptable drug likeness and binding energy comparable to the standard drugs were further screened to determine their pharmacokinetic activities. This study showed phytochemicals with the binding energy comparable with the standard drugs (Dovitinb and Geftinib), while ADME, bioactivity score and bioavailability radar analysis gave further insight on these compounds as potent anticancer agents.


Author(s):  
S. Shahida ◽  
Mohammad Kuddusa ◽  
Mohd Kausara ◽  
Basil Alshammari ◽  
Musaabc Althaqafi ◽  
...  

2013 ◽  
Vol 13 (10) ◽  
pp. 1407-1414 ◽  
Author(s):  
L. Fabian ◽  
V. Sulsen ◽  
F. Frank ◽  
S. Cazorla ◽  
E. Malchiodi ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 507-514 ◽  
Author(s):  
Krishnamoorthy Venkateskumar ◽  
Subramani Parasuraman ◽  
Leow Y. Chuen ◽  
Veerasamy Ravichandran ◽  
Subramani Balamurgan

About 95% of earth living space lies deep below the ocean’s surface and it harbors extraordinary diversity of marine organisms. Marine biodiversity is an exceptional reservoir of natural products, bioactive compounds, nutraceuticals and other potential compounds of commercial value. Timeline for the development of the drug from a plant, synthetic and other alternative sources is too lengthy. Exploration of the marine environment for potential bioactive compounds has gained focus and huge opportunity lies ahead for the exploration of such vast resources in the ocean. Further, the evolution of superbugs with increasing resistance to the currently available drugs is alarming and it needs coordinated efforts to resolve them. World Health Organization recommends the need and necessity to develop effective bioactive compounds to combat problems associated with antimicrobial resistance. Based on these factors, it is imperative to shift the focus towards the marine environment for potential bioactive compounds that could be utilized to tackle antimicrobial resistance. Current research trends also indicate the huge strides in research involving marine environment for drug discovery. The objective of this review article is to provide an overview of marine resources, recently reported research from marine resources, challenges, future research prospects in the marine environment.


2020 ◽  
Vol 17 (1) ◽  
pp. 40-50
Author(s):  
Farzane Kargar ◽  
Amir Savardashtaki ◽  
Mojtaba Mortazavi ◽  
Masoud Torkzadeh Mahani ◽  
Ali Mohammad Amani ◽  
...  

Background: The 1,4-alpha-glucan branching protein (GlgB) plays an important role in the glycogen biosynthesis and the deficiency in this enzyme has resulted in Glycogen storage disease and accumulation of an amylopectin-like polysaccharide. Consequently, this enzyme was considered a special topic in clinical and biotechnological research. One of the newly introduced GlgB belongs to the Neisseria sp. HMSC071A01 (Ref.Seq. WP_049335546). For in silico analysis, the 3D molecular modeling of this enzyme was conducted in the I-TASSER web server. Methods: For a better evaluation, the important characteristics of this enzyme such as functional properties, metabolic pathway and activity were investigated in the TargetP software. Additionally, the phylogenetic tree and secondary structure of this enzyme were studied by Mafft and Prabi software, respectively. Finally, the binding site properties (the maltoheptaose as substrate) were studied using the AutoDock Vina. Results: By drawing the phylogenetic tree, the closest species were the taxonomic group of Betaproteobacteria. The results showed that the structure of this enzyme had 34.45% of the alpha helix and 45.45% of the random coil. Our analysis predicted that this enzyme has a potential signal peptide in the protein sequence. Conclusion: By these analyses, a new understanding was developed related to the sequence and structure of this enzyme. Our findings can further be used in some fields of clinical and industrial biotechnology.


Sign in / Sign up

Export Citation Format

Share Document