Electromechanical response of 2-2 layered piezoelectric composites: A micromechanical model based on the asymptotic homogenization method

Author(s):  
K. S. Challagulla ◽  
T. A. Venkatesh
Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1698 ◽  
Author(s):  
Jun Zhu ◽  
Zhi Wang ◽  
Xingyi Zhu ◽  
Bo Yang ◽  
Chuanqing Fu

The double asymptotic homogenization method originated for analyzing physical systems containing two or more length scales was adopted to predict the characteristic of 1-3 type cement-based piezoelectric composites for the first time. The piezoelectric properties of 1-3 type cement-based piezoelectric composites were measured and comparisons between the experimental data and predicted values validate the effectiveness of the present analytical model. Moreover, numerical discussions and experiments show that one should choose proper volume fraction of constituents to achieve the best performance of the 1-3 type cement-based piezoelectric composites.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 232 ◽  
Author(s):  
David Guinovart-Sanjuán ◽  
Jose Merodio ◽  
Juan López-Realpozo ◽  
Kuppalapalle Vajravelu ◽  
Reinaldo Rodríguez-Ramos ◽  
...  

In this manuscript, the equilibrium problem for a flexoelectric one-dimensional composite material is studied. The two-scales asymptotic homogenization method is used to derive the homogenized formulation of this problem. The manuscript offers a step-by-step methodology to derive effective coefficients and to solve local problems. As an illustrative example, results reported in the literature for piezoelectric composites are obtained as a particular case of the formulation derived here. Finally, three flexoelectric/piezoelectric composites are studied to illustrate the influence of the flexoelectric property on the effective coefficients and the global behavior of the structure.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sergey Sheshenin ◽  
Nina Artamonova ◽  
Petr Klementyev

2016 ◽  
Vol 23 (2) ◽  
pp. 136-147
Author(s):  
David Guinovart-Sanjuán ◽  
Raffaella Rizzoni ◽  
Reinaldo Rodríguez-Ramos ◽  
Raúl Guinovart-Díaz ◽  
Julián Bravo-Castillero ◽  
...  

The elastic properties of a spherical heterogeneous structure with isotropic periodic components is analyzed and a methodology is developed using the two-scale asymptotic homogenization method (AHM) and spherical assemblage model (SAM). The effective coefficients are obtained via AHM for two different composites: (a) composite with perfect contact between two layers distributed periodically along the radial axis; and (b) considering a thin elastic interphase between the layers (intermediate layer) distributed periodically along the radial axis under perfect contact. As a result, the derived overall properties via AHM for homogeneous spherical structure have transversely isotropic behavior. Consequently, the homogenized problem is solved. Using SAM, the analytical exact solutions for appropriate boundary value problems are provided for different number of layers for the cases (a) and (b) in the spherical composite. The numerical results for the displacements, radial and circumferential stresses for both methods are compared considering a spherical composite material loaded by an inside pressure with the two cases of contact conditions between the layers (a) and (b).


2018 ◽  
Vol 175 ◽  
pp. 03040
Author(s):  
Xiang Chen ◽  
Xiao-ming Wang ◽  
Yu-lin Mei

As a new type of acoustic metamaterial, the pentamode material has extensive application prospect in controlling acoustic wave propagation because of its fluid properties. Firstly, a kind of pentamode material unit cell is designed, which is a two-dimensional honeycomb truss structure. Then, the asymptotic homogenization method is used to calculate static parameters of the unit cell, and also the influence of the geometric parameters and material composition of the unit cell on its mechanical properties is studied. Besides, based on transformation acoustics and the design method of the cylindrical cloak proposed by Norris, an acoustic cloak with isotropic density and gradient elastic modulus is constructed by periodically assembling the unit cell to guide the wave to bypass obstacles. Finally, the full displacement field analysis is carried out to prove the stealth effect of the acoustic cloak.


Sign in / Sign up

Export Citation Format

Share Document