Dynamic Stability and Static Stress State of a Sandwich Beam with a Metal Foam Core Using Three Modified Timoshenko Hypotheses

2011 ◽  
Vol 18 (2) ◽  
pp. 147-158 ◽  
Author(s):  
E. Magnucka-Blandzi
2007 ◽  
Vol 45 (4) ◽  
pp. 432-438 ◽  
Author(s):  
E. Magnucka-Blandzi ◽  
K. Magnucki

2014 ◽  
Vol 16 (3) ◽  
pp. 325-337 ◽  
Author(s):  
Krzysztof Magnucki ◽  
Pawel Jasion ◽  
Waclaw Szyc ◽  
Mikolaj Jan Smyczynski
Keyword(s):  

2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Qing Hua Qin ◽  
T. J. Wang

The objective of this work is to investigate the quasi-static plastic behavior of a fully clamped metal foam core sandwich beam transversely loaded by a flat punch. A rigid-plastic beam-on-foundation model is extended to study the local denting deformation of a metal foam core sandwich beam. The effects of local denting and core strength on the overall deformation are incorporated in the analysis. Analytical solutions are derived for three different regimes of post-yield deformation mechanisms. Additionally, finite element results are obtained. Comparisons of the present analytical predictions with numerical, previous experimental, and analytical results are presented, respectively. It is shown that local denting has a significant effect on the finite deflection response of the metal foam core sandwich structure. The load-carrying and energy absorption capacities of sandwich beams may be overestimated if the effect of local denting is neglected in analysis. It is demonstrated that the present analytial model can reasonably predict the behaviors of post-yield deformation of sandwich beams. Moreover, the present analytical method can be extended to predict the low velocity/energy impact problems of sandwich structures.


2004 ◽  
Vol 72 (3) ◽  
pp. 408-417 ◽  
Author(s):  
V. L. Tagarielli ◽  
N. A. Fleck

Plastic collapse modes for clamped sandwich beams have been investigated experimentally and theoretically for the case of aluminium face sheets and a metal foam core. Three initial collapse mechanisms have been identified and explored with the aid of a collapse mechanism map. It is shown that the effect of clamped boundary conditions is to drive the deformation mechanism towards plastic stretching of the face sheets. Consequently, the ultimate strength and level of energy absorption of the sandwich beam are set by the face sheet ductility. Limit load analyses have been performed and simple analytical models have been developed in order to predict the postyield response of the sandwich beams; these predictions are validated by both experiments and finite elements simulations. It is shown experimentally that the ductility of aluminium face sheets is enhanced when the faces are bonded to a metal foam core. Finally, minimum weight configurations for clamped aluminium sandwich beams are obtained using the analytical formulas for sandwich strength, and the optimal designs are compared with those for sandwich beams with composite faces and a polymer foam core.


2011 ◽  
Vol 462-463 ◽  
pp. 639-644
Author(s):  
Qing Hua Qin ◽  
Jian Xun Zhang ◽  
Tao Wang ◽  
Tie Jun Wang

Structural response of pin-supported metallic foam core sandwich beam is theoretically investigated. Effects of local denting and core strength and interaction of bending and axial stretching are considered in analysis. A rigid-plastic beam-on-foundation is employed to consider local denting deformation. The local denting continues during the overall deformation of sandwich beam. It is shown that upon neglecting the effect of local denting, the load-carrying capacity and energy absorption of sandwich beam may be overestimated, and the normal axial (membrane) force associated with plastic stretching substantially stiffens the sandwich beams.


2013 ◽  
Vol 535-536 ◽  
pp. 405-408
Author(s):  
Jian Xun Zhang ◽  
Qing Hua Qin ◽  
Wei Long Ai ◽  
Zheng Jin Wang ◽  
Tie Jun Wang

The objective of this work is to study the large deflection of a pin-supported slender geometrically asymmetric metal foam core sandwich beam under transverse loading by a flat punch. Based on the yield criterion for geometrically asymmetric metal foam core sandwich structure, analytical solution for the large deflection of a pin-supported slender sandwich beam is obtained, in which the interaction of bending and stretching induced by large deflection is considered. The finite element results confirm the accuracy of the analytical solutions. The effects of asymmetric factor and boundary condition on the structural response of the asymmetric sandwich beam are discussed in detail. It is shown that the axial stretching induced by large deflection plays an important role in the load-carrying and energy absorption capacities of geometrically asymmetric sandwich structure.


Sign in / Sign up

Export Citation Format

Share Document