The effects of plasticity mechanisms on micromechanics of composites with fiber waviness defects under compression

Author(s):  
Paulina Díaz-Montiel ◽  
Satchi Venkataraman ◽  
Hyonny Kim
Keyword(s):  
2017 ◽  
Vol 52 (15) ◽  
pp. 2065-2074 ◽  
Author(s):  
Bo Wang ◽  
Nobuhide Uda ◽  
Kousei Ono ◽  
Hiroto Nagai

In this paper, a combination of experimentation and analysis is used to study the effect of micro in-plane fiber waviness on the compressive properties of unidirectional fabric composites. The experimental part includes a measurement of the micro in-plane fiber waviness in two types of unidirectional fabrics, manufacturing composites with each unidirectional fabric via VaRTM process and tests for establishing the compressive modulus and strengths of the composites. The compressive strengths were confirmed to be affected by the micro in-plane fiber waviness, but the compressive modulus was not. Furthermore, a two-dimensional numerical model is proposed to explain our experimental results. The numerical results indicate that the tensile stress (owing to the micro in-plane fiber waviness) and compressive stress along the weft and warp directions, respectively, of the composite lead to reductions in the compressive strength.


2021 ◽  
pp. 002199832110476
Author(s):  
Haiyan Zhang ◽  
Yan Ren ◽  
Jiaxin Song ◽  
Qi Zhu ◽  
Xuefen Ma

Out-of-plane waviness is one of the most common defects which degenerates the strength, stiffness, and fatigue life of hybrid glass–carbon fiber–reinforced polymer composites (FRPs). An accurate and high-speed non-destructive testing method is highly desired for large composite structures in industries. Ultrasonic phased array is a great candidate for such application. This paper applies the wavenumber algorithm to image the waviness in hybrid FRP plates which are a multi-layered medium. The central frequency of 5 MHZ is chosen in order to maximize the ply resonance. Transducers are migrated virtually to each interface between glass and carbon plies in order to overcome the difficulty of wave propagation analysis in such multi-layered system. The wavenumber algorithm demonstrates a better computational performance compared to that of the traditional total focusing method (TFM) in time domain up to 6 times. The glass ply depth and waviness angle can be more accurately presented with relative errors less than 1.5% and 14.8%, respectively. In addition, the resin-rich defect characterization is also achievable with a maximum error of 14.4%.


1999 ◽  
Author(s):  
H.-J. Chun ◽  
S. W. Lee ◽  
I. M. Daniel

Abstract A finite element analysis model was developed to predict flexural behavior of thick composites with uniform, graded and localized fiber waviness. In the analyses, material and geometrical nonlinearties due to fiber waviness were incorporated into the model utilizing energy density and an incremental method. In the model, two kinds of geometrical nonlinearity were considered, one due to reorientation of fibers and the other due to difference of curvatures from one finite element to another during deformation. The finite element analyses utilize the iterative mapping method to incorporate these geometrical nonlinear factors. The model was used to predict not only the flexural behavior of a flat thick composite plate but also of a thick composite plate with initial curvature. Flat composite specimens with various degrees of fiber waviness were fabricated and four-point flexural tests were conducted. The predicted nonlinear behavior by the current model was compared with results from the thin slice model [7] and experiments. Good agreement was observed among them.


2021 ◽  
pp. 100981
Author(s):  
Yanfei Liao ◽  
Jingjing Wang ◽  
Zhiwei Zeng ◽  
Junming Lin ◽  
Yonghong Dai

2016 ◽  
Vol 36 (5) ◽  
pp. 347-359 ◽  
Author(s):  
Qiyi Chu ◽  
Yong Li ◽  
Jun Xiao ◽  
Dajun Huan ◽  
Xiaodong Chen

The change of mold normal curvature along the trajectory may result in out-of-plane waviness during the automated laying process, on which the layup speed and temperature would have an effect. A new parameter, deformation rate, was defined by combining the effect of mold curvature change rate and layup speed. A predicting model was proposed based on the fiber waviness and interlaminar sliding model to calculate the relationship between stiffness retention and the layup process parameters, including deformation rate and temperature. An experimental study on the effect of different deformation parameters on the tensile performance of composites was carried out based on a new manufacturing method of plated specimens with different levels of waviness by means of a four-point bending fixture. The experimental results showed that when the deformation temperature increases from 20℃ to 80℃, the tensile strength increases first and then decreases while the tensile module keeps increasing. While the deformation rate decreases from 0.40 to 0.04 mm−1/s, both tensile strength and module showed an increasing trend. The predicting model being validated by experimental results can be utilized to optimize the layup process parameter to satisfy the quality and efficiency requirements.


Sign in / Sign up

Export Citation Format

Share Document